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Abstract

Person identification aims at matching persons across images or videos captured by

different cameras, without requiring the presence of persons’ faces. It is an important

problem in computer vision community and has many important real-world applica-

tions, such as person search, security surveillance, and no-checkout stores. However,

this problem is very challenging due to various factors, such as illumination varia-

tion, view changes, human pose deformation, and occlusion. Traditional approaches

generally focus on hand-crafting features and/or learning distance metrics for match-

ing to tackle these challenges. With Convolutional Neural Networks (CNNs), feature

extraction and metric learning can be combined in a unified framework.

In this work, we study two important sub-problems of person identification: cross-

view person identification and visible-thermal person re-identification. Cross-view

person identification aims to match persons from temporally synchronized videos

taken by wearable cameras. Visible-thermal person re-identification aims to match

persons between images taken by visible cameras under normal illumination condition

and thermal cameras under poor illumination condition such as during night time.

For cross-view person identification, we focus on addressing the challenge of view

changes between cameras. Since the videos are taken by wearable cameras, the un-

derlying 3D motion pattern of the same person should be consistent and thus can be

used for effective matching. In light of this, we propose to extract view-invariant mo-

tion features to match persons. Specifically, we propose a CNN-based triplet network

to learn view-invariant features by establishing correspondences between 3D human

MoCap data and the projected 2D optical flow data. After training, the triplet net-
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work is used to extract view-invariant features from 2D optical flows of videos for

matching persons. We collect three datasets for evaluation. The experimental results

demonstrate the effectiveness of this method.

For visible-thermal person re-identification, we focus on the challenge of domain

discrepancy between visible images and thermal images. We propose to address this

issue at a class level with a CNN-based two-stream network. Specifically, our idea

is to learn a center for features of each person in each domain (visible and thermal

domains), using a new relaxed center loss. Instead of imposing constraints between

pairs of samples, we enforce the centers of the same person in visible and thermal

domains to be close, and the centers of different persons to be distant. We also enforce

the feature vector from the center of one person to another in visible feature space to

be similar to that in thermal feature space. Using this network, we can learn domain-

independent features for visible-thermal person re-identification. Experiments on two

public datasets demonstrate the effectiveness of this method.
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Introduction
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Recognizing persons is one of the most fundamental tasks humans need to perform

on a daily basis. For person recognition, we rely mostly on a person’s face. However,

a person’s appearance such as clothes, accessories, and hair style can also be used

for person recognition. Besides, walking style, or gait, is also an important cue. In

current person recognition systems, face images are still the first choice for recognizing

a person’s identity. However, face images are not always available, which makes face

recognition not applicable in some scenarios. Person identification aims at identifying

a person’s identity from a given image or video of the person, without requiring the

presence of the person’s face. In this research, we focus on person identification,

which matches person across images or videos.

In a general setting, we are given a person image or video as the query and our goal

is to find the same person in a gallery (database) of person images or videos. Since

there are many person identities in the gallery, we usually rank the person images

or videos according to their similarities to the query person image or video. The

higher the ground-truth person image or video ranks, the better. Figure 1.1 shows

an example result of person identification. The ground-truth person images in the

gallery set are highlighted in green box. The gallery images are ranked in descending

order from left to right by the similarity to query image.

For a practical person identification system, three modules will be needed: per-

son detection, person tracking (for video-based person identification), and person

retrieval [153]. As shown in Fig. 1.2, persons are first detected with a human detec-

tion model and then associated across frames to obtain the tracking result. We follow

the common protocol and assume that both person detection and person tracking are

accomplished, to focus on the person retrieval module as shown in Fig. 1.2(c). Specif-

ically, as shown in Fig. 1.3, the pipeline of person identification can be divided into

two stages: feature extraction and distance computation. Features are first extracted

as a representation for each image or video in both query and gallery sets. Distance

2
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Query Gallery

Rank: High to low

Figure 1.1 An example result of person identification. The gallery images are
ranked in descending order from left to right by the similarity to query image.

(a) Person detection

(b) Person tracking

(c) Person retrieval

Query Gallery

Figure 1.2 Three modules for a practical person identification system: person
detection, person tracking, and person retrieval.

metric computes the distance or similarity between each image or video in the query

set to each image or video in the gallery set. Both feature extraction and distance

metric can be hand-designed or learned with deep networks.

Person identification is a very important problem in computer vision community.

3
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Image/video
pair Feature extraction Distance metric

Distance or
similarity

Figure 1.3 An illustration of the pipeline for person identification.

First, it can be applied to various real-world vision-based scenarios. For example,

we can apply person identification to search for a criminal in escape given an im-

age or video of the criminal. Specifically, we can match the given image or video to

those captured by surveillance cameras in different places such as gas stations, toll

stations, airports, and grocery stores. In this case, visual comparisons by human is

labor-intensive, inefficient and prone to error. Thus, automatic search with person

identification is much desirable. Similarly, person identification can be applied for

searching for missing person in a large theme park. In an event scene with crowded

people, police officers can use wearable cameras to capture videos for surveillance,

in which the same persons can be identified with person identification for detecting

abnormal activity. With the fast growing internet-of-things (IoT) devices, person

identification can be embedded in video-based security surveillance systems. Person

identification could also be applied to identify the same persons with shopped items

for no-checkout stores such as Amazon Go for the convenience of shopping experience.

Second, the study of person identification can improve our understanding of key fac-

tors in human and computer vision systems, and may further benefit the refinement

of person identification system and other automatic vision-based systems. An accu-

rate, robust and efficient person identification system requires effective features for

matching. This is a very challenging task since there are many different variations in

person images captured.

4
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1.1 Challenges

Although studied for over a decade, person identification remains a very challenging

problem. Even with today’s big data and state-of-the-art deep learning techniques,

this problem is far from being solved. The complexity of this problem mostly comes

from many different variations when capturing persons’ images or videos. Such varia-

tions could make not only the same person look dissimilar, but also different persons

similar. We will describe these challenges in detail in the following.

Illumination variation

The change of illumination can dramatically change a person’s appearance even

though he/she is captured in the same place wearing the same clothes. One fa-

mous example is the dress shown in Fig. 1.4. The dress is blue and black as shown in

Fig. 1.4(a). However, with a different illumination as in Fig. 1.4(b), the dress could

be perceived as white and gold by some people, if not all. For person identification,

appearance features, especially colors, are important for matching. Different illu-

mination can lead to different appearances of the same person, thus making person

identification more difficult.

(a) (b)

Figure 1.4 An illustration of appearance change caused by illumination variation.

5
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(a) (b) (c) (d)

Figure 1.5 An illustration of view angle variations: each column is a pair of images
for the same person.

View angle variation

The view angle from which a person is captured also affects the appearances. Fig-

ure 1.5 shows four pair of person images captured from different view angles in

CUHK02 dataset [69]. For each pair of person images, we can see that the ap-

pearance varies largely as the view angle changes. Because each image of a person

is the projection from 3D space to 2D space, different view angles result in different

2D projections and very different appearances. Therefore, the view angle variation is

also harmful to the accuracy of person identification.

Scale variation

The distance from a person to the camera determines how large this person will

appearance in the image captured. The larger the distance is, the smaller the person

appears. Figure 1.6 shows three pairs of person images with different scales in SYSU-

MM01 dataset [124]. Because of the scale variation, the features extracted usually

have different dimensions and cannot be matched directly. One common approach is

to resize person images to a fixed size such that features of all images will have the

same dimension. However, this approach will lose information for images larger than

the fixed size.

6
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(a) (b) (c)

Figure 1.6 An illustration of scale variations: each column is a pair of images for
the same person.

Figure 1.7 Example images with occlusions.

Partial occlusion

Person identification is often applied to visual surveillance systems, where the cameras

are installed in tall buildings or poles with crowded people in the camera view. This

can cause the problem of severe occlusion in the images captured. Figure 1.7 shows

some example images with occlusions from iLIDS-VID dataset [120]. These occlusions

will affect the features extracted and deteriorate the person identification accuracy.

Low image quality

Another challenge in person identification is the low image quality in the data, such

as the images from iLIDS-VID dataset [120] shown in Fig. 1.7. Although high reso-

lution cameras are adopted everywhere, person identification datasets are usually for

7



www.manaraa.com

Figure 1.8 Example images with human pose variation.

security surveillance and thus captured at low resolution to save storage. Such low

image quality will produce low quality features, which will lower the performance of

person identification.

Human pose variation

Humans can have a large variety of poses for different situations, such as standing,

sitting, walking, and riding bike. Such variations cause the large variation of person

images. For person identification, walking is the most common situation, which

eases the problem to some extent. However, walking also has different phases with

different poses. Besides, a person can carry a bag or other accessories while walking,

thus resulting in more pose variations. Figure 1.8 shows some different poses from

CUHK02 dataset [69]. Moreover, the human poses are projected from 3D physical

space into 2D image space, which leads to the loss of information and results in some

ambiguity.

Change of clothes, accessories, and hair styles

Currently, person identification assumes that the same person wears the same clothes.

Thus, most existing approaches for person identification rely on appearance features

for matching persons across images or videos. However, in practice, people may

change their clothes, accessories, hair styles, and other appearances from time to

8
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time. In this situation, these approaches will be much less effective and we need to

resort to more robust features for matching such as biometric features: gait, height,

body limb shape, and so on.

Faulty detection

Natural images are usually captured with more than just one person included. There-

fore, manual annotation or automatic detection are needed to obtain the bounding

box for each person, so that better features are extracted for person identification.

Previously, manual annotation is adopted as the scale of person identification datasets

is small. With larger and larger datasets being collected, automatic detection is used

more often than manual annotation as it is more efficient. Ideally, the bounding

boxes are tightly detected around the person. However, even state-of-the-art hu-

man detection models are not good enough, which can produce undesirable or even

wrong predictions of bounding boxes. Figure 1.9 shows some faulty detections from

SYSU-MM01 dataset. Some images only contain part of a person, while others have

too much background or even no person inside at all. The bad detection further

introduces misalignment of persons in both the image space and feature space.

(a) (c)(b)

Figure 1.9 Faulty detections with (a) too many background, (b) only part of
human body, and (c) no human at all.

9
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1.2 Taxonomy of Person Identification

With more and more attention drawn to person identification, several important sub-

problems have been raised by researchers. These problems can be divided into two

categories: person re-identification and cross-view person identification. These sub-

problems are mainly divided by the scenarios of applications. In this section, we will

describe these sub-problems of person identification in more detail.

1.2.1 Person Re-Identification

Person re-identification aims at matching persons between images or videos captured

at different times and different places without view overlap. It is the most widely

studied problem so far. It can be categorized into image-based and video-based

depending on the format of input data. Figure 1.10 shows some pairs of person im-

ages and videos for image-based and video-based person re-identification, respectively.

Since the images or videos to be matched are captured at different times and different

places, the difficulty in matching can be elevated by variations such as illumination,

background, viewpoint, human pose, and scale. Besides, we cannot take advantage

of video temporal synchronization as they are not captured at the same time. Pre-

viously, various hand-crafted features [25, 84, 32, 85, 6, 2, 9, 56, 107] and metric

learning approaches [105, 101, 154, 72, 44, 122, 57, 73, 119] are derived to tackle

this problem. Recently, convolutional neural networks (CNNs) are widely applied for

person re-identification. State-of-the-art performances are achieved with CNN-based

approaches [114, 112, 13, 67, 145, 111, 146, 131, 156, 86, 87, 144, 121, 71, 157], some

of which have surpassed human-level. However, current person re-identification solu-

tions still suffer from the common problem of overfitting because of the insufficient

dataset scale, which more researchers are focusing on recently [108, 27, 100, 121, 157].

10
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(a) Image-based person re-identification. (b) Video-based person re-identification.

Figure 1.10 Examples of (a) image-based person re-identification from
Market-1501 dataset [152] and (b) video-based person re-identification from
iLID-VIDS dataset [120]. Each column corresponds to the same person.

Partial Person Re-Identification

In [155], Zheng et al. introduced a new problem named partial person re-identification,

which focuses on the issue of occlusion in person re-identification. In this new problem

setting, the goal is to find the same person captured with full body appearance given

only a partial query image. In practice, a person may not be captured with full-body

image by camera due commonly happening occlusions. Occlusions can result from

self-occlusion, crowded people, or static obstacles such as trees or poles. It is also

possible that a person may be intentionally hiding which causes occlusion [155]. For

example, a criminal in escape is very likely to intentionally hide from surveillance

cameras to avoid being caught. Figure 1.11 shows example images for partial person

re-identification. In this problem setting, the occlusion always exists and can happen

to any part of a human body. Therefore, it is important to correctly detect the oc-

clusion to extract robust features for partial person re-identification. To address this

issue, several approaches are developed recently [54, 39, 24, 104, 113, 40, 49, 82].

Person Search

As mentioned before, a practical person identification system requires person detec-

tion, person tracking, and person retrieval. Because in real-world applications, only
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Figure 1.11 Examples of partial person re-identification in [155]. First row:
original partial person images, second row: input for partial person re-identification
annotated by operators, third row: corresponding full-body images.

whole-scene images are provided. Each instance of persons in the whole-scene images

need to be detected and tracked first before they can be used in person retrieval for

identification. Recently, more attention are drawn to unify the person detection and

person retrieval process, namely person search [132, 129, 78, 42, 77, 11, 127, 63, 47,

8, 134, 95]. In person search, the person tracking process is neglected since it only

applies to videos and videos are not always available. Specifically, person search first

detects individual persons from whole-scene images, and then matches each individ-

ual person to a query person, as shown in Fig. 1.12. These two processes are unified

in the sense that features extracted from the whole-scene image are utilized again for

person retrieval. Thus, the overall inference procedure could be significantly accel-

erated for better efficiency. However, it also poses a new question: are the features

extracted from whole-scene images optimal for person retrieval, which is bounded to

only a local area? As for now, this remains an open question, since whole-scene image

features are extracted from the whole image. The features contain both information

of the person and information of background, which may or may not be useful. If

12
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Figure 1.12 An illustration of person search in [129].

not, how should we utilize the whole-scene image features to better search the person

of interest?

Visible-Thermal Person Re-Identification

Visible-thermal person re-identification aims at matching persons between visible

(RGB) images and thermal (infrared) images. This problem is rarely studied [124,

137, 138, 17] yet it can be applied to substantially improve security surveillance under

poor illumination conditions, such as night time. As shown in Fig. 1.13, thermal

images lack color information due to the poor illumination condition. As a result,

besides the common challenges seen in regular person re-identification, there exists

semantic domain discrepancy between visible images and thermal images. Existing

efforts [124, 137, 138, 17] try to reduce such domain discrepancy by enforcing the

feature representations of both visible images and thermal images into a common

feature space.

1.2.2 Cross-View Person Identification

In [151], we are the first to propose a new important sub-problem of person iden-

tification: cross-view person identification (CVPI), which matches persons between
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Figure 1.13 Visible-thermal person re-identification. Each column contains a
visible image and a thermal image from the same person.

temporally synchronized videos taken by wearable cameras. This problem is impor-

tant since it can facilitate the understanding of event scenes captured by multiple

wearable cameras such as Google Glass and GoPro. For example, in a protest scene,

police officers on site can use Google Glasses for surveillance and their captured videos

from different view angles can provide complementary information for recognizing ab-

normal activities of people. In order to perform multi-view activity recognition, we

need to first identify the same person of common interest from multiple videos, which

is the goal of CVPI.

For CVPI, the videos taken by multiple wearable cameras are temporally synchro-

nized, i.e., these videos are aligned in a way that the corresponding frames in all these

videos are taken at the same time. This can be achieved by synchronizing clocks in

these cameras. We show an example of a person captured by two cameras from two

different views synchronously in Fig. 1.14, where the two videos are a matching or

positive pair. If two temporally synchronized videos capture two different persons,

they are a non-matching or negative pair.

14
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camera 1 camera 2

Figure 1.14 An example of two temporally synchronized videos capturing the
same person from two different view angles.

Table 1.1 Differences between CVPI and person reID.
CVPI Person reID

Video Temporally synchronized Not synchronized
Application The same scene Different scenes
Camera Wearable camera Static camera

View angle Horizontal view Tilted view

While the proposed CVPI and the long studied person re-identification (reID)

both aim to match persons, these two problems have many differences, as shown in

Table 1.1. The most important difference is that the pair of videos are temporally

synchronized in CVPI, but not in person reID. CVPI aims to match the same person

captured at the same time and scene, while person reID aims to match the same

person captured at different times and scenes. The videos in CVPI are usually taken

by wearable cameras such as GoPro or Google Glass, while the videos in person

reID are usually taken by static cameras mounted on buildings or poles. Besides,

videos in CVPI are usually captured by wearable cameras at a normal human height,

while videos in person reID are usually captured from a tilted view by static cameras

mounted on buildings or poles. CVPI and person reID have different challenges:
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person reID could not take advantage of video temporal synchronization and CVPI

is expected to match person with much larger view differences.

1.3 Proposed Research

1.3.1 Cross-View Person Identification

In this research, we first study the problem of cross-view person identification. We

propose to utilize human motion consistency for CVPI, since the same person must

have the same underlying movement in temporally synchronized videos. To represent

human motions, we use optical flow as following motion-based approaches. However,

optical flow is the motion projected from 3D space to 2D space, and thus view-variant.

To address this problem, we propose to learn a model to extract view-invariant fea-

tures from optical flows, by training with optical flow data together with 3D human

motion capture (Mocap) data. Specifically, we propose a novel approach to synthe-

sizing optical flows from a 3D Mocap database. We train a Triplet Network (TN)

consisting of three sub-networks: two for the synthesized optical flow sequences from

different views and one for 3D Mocap sequences. The sub-networks for the optical

flow sequences are further fine-tuned on real-world optical flows and then used to

extract view-invariant features for CVPI. To evaluate this method, we collected three

datasets with pairs of synchronized videos taken by wearable cameras. Experimen-

tal results show that, training the proposed network on the synthesized optical flow

sequences together with 3D Mocap sequences can achieve better performance than

only training sub-networks on optical flow sequences. The proposed method performs

comparably with state-of-the-art methods, using only the motion information. Fur-

ther combination of the proposed method with an appearance-based method achieves

new state-of-the-art performance.
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1.3.2 Visible-Thermal Person Re-Identification

We also study the problem of visible-thermal person re-identification (VT-reID),

which is rarely studied despite its great importance in person identification. VT-

reID aims to match persons across images taken by visible cameras under normal

illumination condition and thermal cameras under poor illumination condition such

as during night time. As thermal images lack color information due to the difference

of illumination condition and imaging process, one major challenge of VT-reID is the

semantic domain discrepancy between visible images and thermal images. In this

research, we propose to learn domain-independent features for visible-thermal person

re-identification with class-level constraints to alleviate this problem, in which each

person is treated as a class. The intuition is to reduce the influence of individual

samples that are too hard to identify or even wrongly-labeled, by weighing all sam-

ples within each class. Specifically, we train a two-stream CNN network to extract

features from visible and thermal images separately. For each person, we learn one

center from features in visible domain and one center from features in thermal do-

main, with a new relaxed version of center loss [123]. Then, we apply the pull and

push constraints to the centers of the same or different persons in visible and thermal

domains. More specifically, we enforce centers of the same person in visible domain

and thermal domain to be close to each other, and centers of different persons to

be distant from each other. Furthermore, for two different persons, the inter-class

difference between their centers in the visible domain should be similar to that in the

thermal domain. We formulate these class-level constraints as class-level supervision

to train the two-stream CNN network, which is later used to extract features from

visible and thermal images separately for person re-identification. Experiments on

two public datasets demonstrate the effectiveness of this method.
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1.4 Structure of the Dissertation

This dissertation is organized as follows. In Chapter 2, we introduce some essential

background knowledge for this research. In Chapter 3, we review previous works

related to this research. Chapter 4 and 5 primarily details the proposed research.

Finally, we conclude this dissertation in Chapter 6.
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Chapter 2

Background
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In this chapter, we briefly review the essential background knowledge for this re-

search. Specifically, we will introduce Convolutional Neural Networks (CNNs), Long

Short-Term Memory networks (LSTM), and some metric learning approaches. CNNs

have been widely applied to person identification and achieved significant perfor-

mances in various person identification datasets. LSTM is typically used to process

sequential input data, such as audio, video and texts. Another indispensable ele-

ment of person identification is metric learning. The metric learning in deep neural

networks are usually called deep metric learning, which guides the network to learn

effective feature embeddings. We will introduce these important concepts in the

following sections.

2.1 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are a member of the neural network family

and similary to a regular neural network. A regular neural network contains a se-

quence of layers, each consisting of a group of neurons. Figure 2.1(a) shows a 3-layer

neural network. Each layer of neurons receive some input, perform a dot product

and optionally add a non-linearity in the end. The output of one layer is fed to the

next layer. Each neuron in one layer is connected to all the neurons in the preceding

layer, which is usually called fully-connected. The input layer receives input from

raw input data, and the output layer (last layer) outputs the predictions. Each layer

bears a set of weights/parameters for the dot-product operation. The parameters

are to be learned from data, by minimizing different loss functions depending on the

tasks. Loss functions, such as cross-entropy loss or mean square error (MSE) loss,

are commonly used to train the network. To process image data as input, we usually

reshape the image pixels into a long vector and feed it to the regular neural network.

However, regular neural networks do not scale well to larger images because of the

full connectivity between neurons of neighboring layers. As image sizes increases,
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(a) (b)

Figure 2.1 (a) An ordinary 3-layer neural network. (b) A convolutional neural
network. (Source: http://cs231n.github.io/convolutional-networks/)

the number of parameters will increase exponentially as there are many layers in a

regular neural network. This will not only increase the computation but also lead to

overfitting problem.

Similar to regular neural network, a CNN also contains many layers, with many

neurons in each layer. However, the neurons in CNN layers are different from the

neurons in ordinary NNs. Specifically, the neurons in CNN are arranged in three

dimensions: width, height, and depth, as shown in Fig. 2.1(b). Another difference

between CNN and regular neural network is the connectivity between neurons of

neighboring layers. In CNN, a neuron in one layer is only connected to a part of

neurons in the preceding layer, and the parameters are shared between neurons.

Such a design has two advantages: 1) it reduces the computation and the number of

learnable parameters significantly; 2) compared to neurons in regular neural network,

it is more natural because neurons should perceive different regions in an image in

the same manner. There are three major types of layers in CNNs: convolutional

layer, pooling layer, and fully-connected layer. Figure. 2.2 shows the architecture of

AlexNet [58].
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Figure 2.2 An illustration of the AlexNet architecture.

Convolutional Layer

Convolutional layer is essential to CNN, which changes the way how regular neural

network operates on input. Taking AlexNet as an example, each layer contains ci ×

hi × wi neurons, where ci, hi and wi are the depth, height, and width of i-th layer (l

layers in total). Usually, the height and width in each layer are the same for CNN

architectures. We will use ki to represent both height and width from now on. In

each layer, a neuron is only connected to a local region of neurons in the preceding

layer, as shown in Fig. 2.2. Each layer has a set of filters, also known as filters, which

determines how each neuron connect with the preceding layer. For example, the first

convolutional layer in AlexNet has 96 kernels of size 7×7. Thus, each neuron connects

to 7 × 7 neurons in the input layer, which are basically image pixels. The kernels

slide over the whole image and convolve with each region to produce the feature

maps. These feature maps are later fed to the second convolutional layer. Padding

and striding are often used in the convolution operation. The spatial size of output

feature map is calculated as following:

ki = ki−1 −m+ p

s
+ 1, 1 ≤ i ≤ l (2.1)
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Figure 2.3 Visualization of filters in the first convolutional layer of AlexNet.

where m, p, and s are the kernel size, padding size and striding size, respectively. For

each kernel, there is another bias parameter added to the convolution output. The

bias parameter is also learnable.

Figure 2.3 shows the visualizations in the first convolutional layer of AlexNet.

Based on the visualization, we can see that the filters can detect edges, colors, and

other patterns with different orientations. Later study in ZF-Net [142] shows that

low layers in CNN extracts low-level features such as edges while high layers extract

high-level features such as parts and regions.

After the convolution operation, a nonlinear mapping function is applied to add

nonlinearity between input and output of each layer. Such function is usually called

activation function. The most commonly used nonlinear function is Rectified Lin-

ear Unit(ReLU) [58]. It can speed up the convergence of CNN compared to previ-

ously used sigmoid function. ReLU function is simply defined as: f(x) = max(0, x).

Later, more advanced activation functions such as ELU [16], Leaky ReLU [89], and

PReLU [37] are proposed.
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Figure 2.4 An example of pooling operation for a 3× 3 kernel.

Pooling Layer

Another key component in CNN is the pooling layer. The function of pooling layer

is to reduce the spatial size of feature maps. Specifically, the pooling layer scan

through the whole feature map region by region, and pools a number for each region

to produce the output feature map. Similar to convolutional layer, there are two

parameters that determines how the pooling operates: kernel size and stride. The

kernel size determines the size of each region, while the stride determines the space

between two neighboring regions. Note that these two parameters are not learnable,

but predefined. Pooling strategies include max-pooling and average-pooling. Max-

pooling produces one number for each region, as shown in Fig. 2.4. In AlexNet [58],

kernel size is 3 × 3 and stride is 2, which is also the common choice of other CNN

architectures.

Despite such a simple operation, pooling layer has many advantages. First, the

computation time is reduced as the spatial sizes are reduced. The computation time

reduction is significant considering the number of layers in CNNs can go up to tens,

hundreds and even over a thousand. Pooling layer also increases nonlinearity as the

pooling operation is nonlinear. The reason we can perform pooling is that neighboring

pixels in images are usually similar and not always informative. We can use pooling

to reduce some redundancy. Pooling layer also enlarges the receptive field [83], which

is essential for CNN to gain more context information for prediction. Finally, pooling
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layer can improve the translation-invariance of CNN, which is necessary for tasks

caring more about global context, such as classification.

Fully-Connected Layer

For a fully-connected (FC) layer, each neuron is connected to all neurons in the

preceding layer. FC layers are already used in regular neural networks. Because of

the connection pattern, FC layers can obtain information from the global context.

As a result, they are usually appended at the end of a network to make predictions.

For example, AlexNet has three consecutive FC layers at the end. However, the huge

number of parameters in FC layers make them the computation bottleneck of CNN.

In view of this, recent CNN architectures, such as ResNet [38], use global average

pooling to obtain global context information and only keep one FC layer.

2.2 Long Short-Term Memory Network

Recurrent Neural Network (RNN) is a network with recurrent connections, as shown

in Fig. 2.5(a). RNN can be considered as a sequence of regular neural networks

by unrolling it, whose parameters are shared. In the equivalent sequential neural

networks, the output of neurons in the preceding network is fed to the next network, as

shown in Fig. 2.5(b). With the recurrent connection, RNN can propagate information

through time. Therefore, RNN can process sequence data, such as audio, video, and

text.

Long Short-Term Memory (LSTM) network [45] improves RNN to solve the long-

term dependency problem. Specifically, the key component of LSTM is the cell state

ct indexed by time step t, which memorizes previous information. It also has input

gate it, output gate ot and forget gate ft, as shown in Fig. 2.6. Specifically, the
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(a) (b)

Figure 2.5 An example Recurrent Neural network (RNN) with one input and one
output. (a) The original RNN with the recurrent connection. (b) The equivalent
unrolled RNN. (Source:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Figure 2.6 An unrolled Long Short-Term Memory (LSTM) network. (Source:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/)

network states is updated as follows:

it = σ(Wxixt +Whiht−1 + bi), (2.2)

ft = σ(Wxfxt +Whfht−1 + bf ), (2.3)

ot = σ(Wxoxt +Whoht−1 + bo), (2.4)

ct = ft · ct−1 + it · tanh(Wxcxt +Whcht−1 + bc), (2.5)

ht = ot · tanh(ct), (2.6)

where σ is the sigmoid function and · denotes element-wise multiplication. W =
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{Wxi,Wxf ,Wxo,Wxc,Whc} are the weight parameters and b = {bi, bf , bo, bc} are the

bias parameters. The parameters are learned using back-propagation through time

(BPTT). We use the hidden state ht as the features at each time step, and all the

hidden states h = {h1, h2, . . . , ht, . . . } as sequence-level features.

2.3 Deep Metric Learning

A metric, or distance function, is a function that defines a distance between each pair

of samples. With good metrics, samples of the same class are close to each other,

while samples of different classes are far away from each other. Formally, let us define

a distance metric as a mapping D : X ×X → R+ over a vector space X. A metric

have to satisfy the following conditions:

D(xi, xj) ≥ 0 (2.7)

D(xi, xj) = D(xj, xi) (2.8)

D(xi, xj) ≤ D(xi, xk) +D(xk, xj) (2.9)

D(xi, xj) = 0⇔ xi = xj. (2.10)

Note that a metric is called a pseudo-metric is the fourth condition is not satisfied.

Mahalanobis Distance

In general, a metric can be defined by computing the Euclidean distances after apply-

ing a linear or non-linear transformation L such that x→ L(x). Formally, we define

the metric as:

DL(xi, xj) = ||L(xi − xj)||22. (2.11)

We can expand the above equation into the following formulation:

DL(xi, xj) = (xi − xj)TLTL(xi − xj). (2.12)
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Further, we can express the squared distance with the square matrix M = LTL,

which is guaranteed to be positive semi-definite. With the term M , we can denote

the squared distance as:

DM(xi, xj) = (xi − xj)TM(xi − xj), (2.13)

which is a pseudo-metric and referred to as Mahalanobis distance. Prior to deep

learning, Mahalanobis distance and kernel-based metrics are often used to character

the linear or nonlinear relations among samples.

Deep Metric Learning

In the context of deep learning, deep neural networks are used to represent complex

nonlinear transformations that are effective in representing the structure of data. To

learn the metrics with deep neural networks, various kinds of loss functions were

proposed, such as contrastive loss [14], triplet loss [106], and quadruplet loss [12].

Contrastive loss [14] is used to separate samples of different classes by a fixed

margin and pull samples of the same class as close as possible. Formally, it is defined

as:

Lcontrastive = yd2 + (1− y) max(m− d, 0)2, y = 0, 1, (2.14)

where d = ||f(xi)− f(xj)||2 is the L2 distance between features of sample xi and

xj. y = 1 indicates xi and xj are from the same class, y = 0 indicate they are from

different classes. m is the fixed margin.

Triplet loss [106] relaxes the contrastive loss by comparing a triplet of samples:

anchor, positive and negative. The positive sample comes from the same class as

the anchor, while the negative sample comes from a different class. As shown in

Fig. 2.7, the goal of triplet loss is to learn the ranking between anchor-positive pair

and anchor-negative pair. Ideally, the anchor-positive distance should be smaller than
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Figure 2.7 The triplet loss [106] optimizes the ranking between anchor-positive
pair and anchor-negative pair, such that the anchor-positive distance is smaller than
the anchor-negative distance.

Figure 2.8 Quadruplet loss [12] also considers the relation between anchor-negative
pair and a different anchor-positive pair.

the anchor-negative distance. Therefore, the triplet loss is defined as:

Ltriplet = max(d(ap)
i − d(an)

i + α, 0), (2.15)

where d(ap)
i = ||f(xai ) − f(xpi )||2 and d

(an)
i = ||f(xai ) − f(xni )||2 are the distances

of anchor-positive pair and anchor-negative pair, respectively. α is a margin that

separates anchor-positive pair and anchor-negative pair.

Quadruplet loss [12] further improves based on triplet loss, by considering the re-

lation between anchor-negative pair and a different anchor-positive pair. Specifically,
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it adds another loss term:

Lquadruplet = max(d(ap)
j − d(an)

i + α, 0), (2.16)

where d(ap)
j = ||f(xaj )− f(xpj)||2.
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Chapter 3

Literature Review
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3.1 Person Re-Identification

Person re-identification is widely studied and closely related to cross-view person

identification. Different from cross-view person identification, which matches per-

sons across temporally synchronized videos taken by wearable cameras, person re-

identification aims to associate persons captured by cameras with non-overlapping

views at different times and places. Person re-identification is also related to visible-

thermal person re-identification, with the distinction that no image modality differ-

ence exists in person re-identification.

Traditional approaches on person re-identification can be divided into two cate-

gories: hand-crafted feature extraction [25, 3, 2, 84, 135, 72, 32, 148, 147, 65, 3, 120,

79] and distance metric learning [101, 154, 44, 120, 105, 130, 72, 143, 10].

3.1.1 Hand-crafted Features.

Hand-crafted image features include Scale-Invariant Feature Transform (SIFT) [81],

Histogram of Oriented Gradients (HOG) [18], Local Binary Pattern (LBP) [99],

Speeded up robust features (SURF) [5], color histograms and so on. These fea-

tures could be extracted from images using RGB, HSV, YUV, or Lab color space.

For person re-identification, various features have been proposed, such as Symmetry-

Driven Accumulation of Local Features (SDALF) [25], BiCov [84], HPE signature [6],

Haar-based and DCD-based signature [2], Local Descriptors encoded by Fisher Vector

(LDFV) [85] and Local Maximally Occurrence (LOMO) [72]. Gray et al. [32] design

view-invariant ensemble of localized features (ELF). Karanam et al. [53] propose to

learn viewpoint invariant dictionaries from training data to extract image features.

Zhao et al. [148, 147] proposed to combine salience with appearance-based features.

In [65, 3], attribute-centric and part-based feature representations are proposed to

learn adaptive weighted features for each individual to account for the variations

across subjects. For video-based person re-identification, spatio-temporal features
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include Histogram of optical Flow (HoF) [9], HoGHoF [64], HOG3D [56] and 3D-

SIFT [107]. Wang et al. [120] use HOG3D to represent fragments of videos. In [79],

a new spatio-temporal representation based on the walking cycle extraction is used.

3.1.2 Distance Metric Learning.

Distance metric learning methods include Mahalanobis distance [105], Support Vector

Ranking (SVR) [101], Probabilistic Relative Distance Comparison (PRDC) [154],

Cross-view Quadratic Discriminant Analysis (XQDA) [72], Relaxed Pairwise Learned

Metric (RPLM) [44], Large Margin Nearest Neighbor (LMNN) [122], KISSME [57],

MLAPG [73], and Semi-Coupled Dictionary Learning (SCDL) [119], etc. Zheng et

al. [154] propose Probabilistic Relative Distance Comparison (PRDC) algorithm by

incorporating ranking problem into a probabilistic framework. Mahanabolis or kernel-

based metric learning are used in [44, 105, 130]. Liao et al. [72] propose Cross-view

Quadratic Discriminant Analysis (XQDA) algorithm which combines metric learning

and subspace learning. Zhang et al. [143] propose to match people in a discriminative

null space of the training data, where images of the same person collapse into a single

point. In [10], spatial constraints are taken into consideration for similarity learning.

3.1.3 Deep Learning Approaches.

With the thriving of Convolutional Neural Networks (CNNs) [66, 58], approaches

based on CNNs have achieved great success in person re-identification [70, 149, 1,

128, 13, 93, 118, 125, 133, 15, 43, 12], which can combine feature extraction and

distance metric learning in a unified framework. In CNN-based frameworks, network

architecture and loss functions guide the feature learning process together, where the

loss functions play the role of metric learning. Therefore, to obtain more effective

features learned by deep networks, both new architectures and new loss functions are

proposed. Since person identification is a problem similar to both image and instance
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retrieval [153], classification loss such as cross-entropy loss and verification losses such

as contrastive loss [14], triplet loss [106] are often adopted for learning features.

3.1.4 Learning global features.

Li et al. [70] propose a Filter Pairing Neural Network (FPNN) to handle misalignment,

photometric and geometric transforms, occlusions and background clutter in person

re-identification. Ahmed et al. [1] use an improved CNN architecture to extract local

features from a pair of images and train the network with binary verification loss.

In [150, 15], Siamese network trained with contrastive loss is used for video-based

person re-identification. Hermans et al. [43] propose a variant of triplet loss which

renders the hard sample mining unnecessary and outperforms the original triplet loss.

Chen et al. [12] further propose quadruplet network which uses an additional negative

sample beyond the original triplet to train the network better. Xiao et al. [128] present

domain-guided pooling to learn deep features from data of multiple domains. Wang

et al. [118] jointly learn single-image representation and cross-image representation

to exploit their connection for better person re-identification.

3.1.5 Learning local features.

However, the above approaches are learning features in a holistic manner and may

missing important local details for effective re-identification. Recently, part-based and

attribute-based methods have been proposed to extract effective local features [114,

112, 13, 67, 145, 111, 146, 131]. Varior et al. [114] propose gated Siamese network to

emphasize fine local patterns in mid-level features. Su et al. [112] learn mid-level hu-

man attributes with a semi-supervised learning framework for robust re-identification

across different datasets. In [13, 67], features from global full-body and local body

parts are jointly learned and combined for person re-identification. SpindleNet [145]

extracts features from local parts in a coarse-to-fine manner and fuse them hierarchi-
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cally to obtain better representation. Su et al. [111] use human pose as cues when

learning features from local parts. Zhao et al. [146] aligns deep features based on

body parts for person re-identification. Xu et al. [131] present a joint spatial and

temporal attention pooling network to extract features dependent on the input pair

for video-based person re-identification.

3.2 Cross-View Person Identification

We first proposed cross-view person identification (CVPI) in temporally synchronized

videos taken by wearable cameras in [151]. This problem is related to several exiting

branches of researches, which we will describe in detail in the following sections.

3.2.1 Learning spatio-temporal features.

Recurrent Neural Network (RNN) and Long Short-TermMemory (LSTM) network [45]

are commonly used to learn features from sequence input such as videos, speeches

and sentences. Because RNN and LSTM networks have recurrent connections, which

can propagate information along temporal sequence. Recently, RNN and LSTM net-

works have been applied to video-based person re-identification [94, 35, 115, 133].

McLaughlin et al. [94] combines Convolutional Neural Network (CNN) with RNN to

extract spatial features from image frames and temporal features from the whole se-

quence. A Siamese architecture is used to learn the distance metric. Haque et al. [35]

apply Recurrent Attention Model (RAM) to person re-identification for depth-based

videos. Varior et al. [115] divide the image into horizontal stripes and feed features

of these stripes as a sequence to LSTM network. The output of LSTM is then used

for person re-identification. Similarly, Yan et al. [133] use local color histogram and

LBP features as input to LSTM network. In this research, we also employ CNN and

LSTM networks to extract features for CVPI, but using optical flows as input and

also incorporating 3D human skeleton data as a stream of the network.
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3.2.2 Data augmentation.

More recently, some researchers focus their attention on producing more data [156,

86, 87] with Generative Adversarial Nets [31]. Such kind of approach serves similarly

to data augmentation, except that they produce data with more variations which

can be used to train models with more generalization ability. In this research, we

develop a triplet network for CVPI. Our proposed triplet network learns to extract

view-invariant features from videos with the supervision of two contrastive losses.

3.2.3 Multi-view Learning

Another line of work related to the CVPI problem is the multi-view learning for

cross-view person re-identification. However, as described previously, person re-

identification differs from CVPI in many aspects. Most importantly, the videos are

temporally synchronized in CVPI, but not in person re-identification. The videos

in CVPI are taken by wearable cameras such as GoPro, while the videos in person

re-identification are usually taken by static cameras. Thus, the view angle of videos

in CVPI may constantly change as the camera wearer can freely move, which brings

additional challenges.

Existing methods of multi-view learning for person re-identification aims to reduce

the variation by learning a dictionary or shared feature space. Specifically, Li et

al. [68] propose cross-view dictionary learning model to improve the discriminative

and robust representations for person re-identification, with different representation

levels, including image-level, horizontal part-level, and patch-level. Yu et al. [140]

propose asymmetric metric learning via view-specific projection for each view based

on asymmetric clustering on cross-view person images. Person images are projected

into a shared feature space with less view-specific biases. In [21], a unified learning

framework for multi-view learning and domain adaptation is formulated, which can be

applied to cross-view person re-identification problem. The proposed method shares
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similar spirit with cross-view dictionary learning or asymmetric metric learning in

reducing the feature difference caused by view angle difference. However, different

from them, we approach the problem by introducing 3D human Mocap data to learn

a model for view-invariant feature extraction.

3.2.4 Gait Recognition

Gait recognition also aims to match person with the gait features, which are consid-

ered as a kind of behavior biometric feature that is unique for each person. Chrono-

gait images [117], gait flow images [62], and gait energy images (GEI) [34] are the

common gait representations for recognition/verification. GEI is shown to be the

most stable and effective features [51], despite GEI is simply defined as averaged

human silhouette along all frames in a video. Both CVPI and gait recognition uses

motion-based features for matching. However, different from CVPI, the video pairs

for gait recognition are not temporally synchronized.

Cross-view gait recognition approaches include the use of hand-crafted view-

invariant features [29, 61] and learning view-invariant projections [92, 60], which

normalize gait features from one view to another for matching. Recently, CNNs are

used for gait recognition [109, 126]. [109] consider gait recognition as a classification

problem and employ a shallow CNN model for feature extraction. Wu et al. [126]

propose three different schemes for gait recognition: matching local features at the

bottom layer, matching mid-level features at the top layer and matching global fea-

tures at the top layer. By learning from paired input GEI images, the method [126]

learns view-invariant projections for gait recognition. Different from gait recognition

methods, which use GEI images with high-level semantics, we train the deep network

using optical flows without high-level semantics. We also use 3D human Mocap data

to improve the view-invariance by associating optical flows to 3D view-invariant data.
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3.2.5 Image/Video Generation

Recently, generative models, especially generative adversarial nets (GANs) [31], have

been widely used for generation of natural images or videos, such as Deep Convolu-

tional GAN [103], Stacked GAN [48], Plug and Play Generative Network [96]. GANs

are further applied to generate realistic person images [86, 88, 102, 156]. However,

the images generated by these approaches cannot be used to learn motion features for

CVPI, since they are not videos. For synthetic video generation, Vondrick et al. [116]

present a generative model that learns from large amount of unlabeled videos to

generate scene dynamics based on static images. Nevertheless, this approach can-

not generate person videos with associated 3D human motion capture data, which

the proposed triplet network needs to learn view-invariant motion features. In this

research, we propose a novel approach to generate sequences of optical flows from

3D human motion capture data with different camera parameters, which are later

fed to the proposed triplet network. Different from GANs, the proposed approach to

synthesizing optical flows is non-parametric and requires no training process.

3.3 Visible-Thermal Person Re-Identification

Person re-identification is also closely related to visible-thermal person re-identification.

However, existing approaches on person re-identification are not suitable for visible-

thermal person re-identification, since the networks are used to extract features from

visible images only and can not be used directly to handle the domain discrepancy

between visible and thermal images. In this research, we propose to learn domain-

independent features with class-level supervision. Specifically, we learn a center for

each person in each domain (visible and thermal). We pose constraints on the centers,

which serves as class-level supervisions.
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3.3.1 Visible-Thermal Person Re-Identification

Compared to person re-identification, visible-thermal person re-identification attempts

to match persons between images or videos taken by visible cameras and thermal

cameras. Existing approaches mainly focus on dealing with the domain discrepancy

between visible and thermal images by adopting CNN networks to learn domain-

independent features [137, 138, 124]. Wu et al. [124] first propose a deep zero-padding

network which can extract features from both visible and thermal images. Ye et

al. [137] propose a two-stream CNN network for extracting features in shared feature

space from visible and thermal images. A further hierarchical cross-modality metric

learning method is applied to enhance the discriminability of the learned features.

In [138], a similar two-stream CNN network is trained with identity loss and triplet

loss to extract domain-independent features from visible and thermal images, with-

out an additional metric learning step. However, all these approaches are minimizing

the domain discrepancy at the sample level, where sample pairs or triplets are used

for training. In this research, we propose to learn domain-independent features with

class-level supervision, in which class centers instead of samples of each class are

constrained.

3.3.2 Domain Adaptation

Domain adaptation is also related to visible-thermal person re-identification, since

both problems deal with data from different domains. Some of the existing work uti-

lizes label information to bridge the gap between source and target domains. Daumé

et al. [19] propose to train classifiers for features mapped from data of both source

and target domain. Kulis et al. [59] propose to learn asymmetric non-linear trans-

formation that maps points from one domain to another using supervised data from

both domains. Yao et al. [136] introduce semi-supervised domain adaptation with

subspace learning, which explores invariant low-dimensional structures to correct the
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mismatch between domains and use unlabeled data in target domain to exploit the

underlying intrinsic information. Donahue et al. [22] propose to adapt classifiers

trained on source domain for target domain, by imposing smoothness constraints on

the classifier scores over unlabeled data.

Other existing work on domain adaptation seeks to align or map the subspaces of

source and target domains in a unsupervised way. Gong et al. [30] propose a kernel-

based method to exploit the intrinsic low-dimensional structures by modeling domain

shifts with an infinite number of subspaces, which characterize changes in geometric

and statistical properties from source domain to target domain. Lin et al. [75] propose

to find the intrinsic low-dimensional subspaces shared by source and target domains.

Fernando et al. [26] propose to learn a mapping function which aligns subspaces with

target ones for domain adaptation. Ni et al. [98] propose a subspace interpolation

method through dictionary learning to link source and target domains. However,

these methods are usually adapting the source domain to the target domain, whereas

we seek to find a shared feature representation from visible and thermal images for

person re-identification.

Recently, unsupervised approaches are proposed for style transfer [158, 80, 139,

110, 55, 159], which can applied to domain adaptation at pixel level.

3.3.3 Class-Level Supervision

Wen et al. [123] are the first to propose center loss to reduce intra-class variation, by

minimizing the distance between a sample and its corresponding class center. How-

ever, we believe this constraint is too strict and impractical because some difference

between samples and class centers should be allowed. Therefore, we propose to relax

this constraint by penalizing only samples whose distances to the corresponding class

centers are larger than a predefined threshold. Cai et al. [7] introduce inter-class

distance between centers of different classes and try to maximize it to improve fea-
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ture discriminability. He et al. [41] propose triplet-center loss which uses incorporates

class centers in the triplet loss. However, these methods are dedicated for classifi-

cation problems in single domain and cannot be applied to visible-thermal person

re-identification directly.

Yu et al. [141] have also observed that both hard and easy samples are useful

in learning good features for person re-identification. They propose to weigh all

samples within each mini-batch, instead of using only hard samples, to train the

network. However, their method only addresses the problem in visible domain, and

it weighs samples within a mini-batch instead of a class. In contrast, we use all the

samples within each class in each domain to learn a center and impose constraints on

the class centers.
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Chapter 4

Cross-View Person Identification
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4.1 Motivation

Cross-view person identification (CVPI) aims to match persons between temporally

synchronized videos taken by wearable cameras. In [151], Zheng et al. propose to

estimate the underlying 3D human poses in each video and use them for CVPI. How-

ever, this method suffers from inaccurate pose estimation. In this work, we propose

to address CVPI by utilizing human motion consistency. For a pair of temporally

synchronized videos that capture the same person, the underlying 3D motion must

be consistent, i.e., identical and synchronized. Specifically, we extract optical flows to

represent the human motion in each video. However, simply examining the similarity

of optical flows is not reliable for CVPI because of two issues: 1) optical flows around

human contains both the desired human motion and undesired camera motion; 2)

optical flows computed from a matching pair of videos can be significantly different

due to view angle difference between the two videos. The first issue can be addressed

by camera-motion compensation algorithms, such as [74]. In this work, we mainly

focus on addressing issue 2) for better CVPI.

Our basic idea is to learn view-invariant motion features by introducing 3D human

skeleton data into the training process. Specifically, we propose to learn common

features shared by the optical flow sequences and the underlying 3D human skeleton

sequence. Since 3D human skeletons are independent of view change, the learned

features of optical flow sequences are view-invariant. We propose a Triplet Network

(TN) which consists of two flow-stream sub-networks and one skeleton-stream sub-

network. After training the proposed TN, the two flow-stream sub-networks can be

used to extract view-invariant features from two optical-flow sequences for CVPI.
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4.2 Proposed Method

4.2.1 Overview

We propose to utilize the motion consistency based on optical flows in videos for

CVPI, since the same person’s motion in synchronized videos are consistent, which

means that the same body parts should be moving the same way (upward, downward,

etc). Specifically, we propose a Triplet Network (TN) to learn view-invariant features

from videos’ optical flows for CVPI, as shown in Fig. 4.1. The network is built on Con-

volutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks.

It consists of two flow-stream sub-networks and one skeleton-stream sub-network. We

feed two sequences of optical flows (from different views) and one sequence of 3D hu-

man skeletons to the three sub-networks respectively. The flow-stream sub-networks

consist of identical CNN and LSTM networks with shared parameters. The skeleton-

stream sub-network only contains LSTM networks. A fully-connected layer is added

to each of the three streams at the end, which outputs the feature embedding for

each stream.

For training, we use contrastive loss between the pair of flow-stream features,

as well as between flow-stream features and skeleton-stream features. We assume

that the features of optical flows and the features of 3D human skeletons should

be similar if they originate from the same person at the same time. Conversely,

they should be dissimilar if they are from different persons or the same person at

different times. We make the same assumption for two sequences of optical flows from

different camera views. By simultaneously minimizing both contrastive losses, we

can improve the view-invariance in the optical-flow-based features. Since no existing

dataset contains optical flow data and corresponding synchronized 3D human skeleton

data, we synthesize optical flows from 3D human skeleton sequences in CMU Mocap
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Figure 4.1 An illustration of the proposed Triplet Network. We input two
sequences of synthetic optical flows from different camera views to the flow streams
(a) and (b) respectively and the underlying 3D human skeleton sequence (from
CMU Mocap database) to the skeleton stream (c). Contrastive loss between the
pair of flow stream features, as well as contrastive loss between the flow stream
features and the skeleton stream features, are used to train the network. We use
both contrastive losses for all the frames in each flow sequence pair and each
flow-skeleton sequence pair. For clarity, we only show three frames of optical flows
and human skeletons.

database1. To synthesize optical flows from different view angles, we project the same

3D human skeleton sequence with different camera parameters. The flow-stream sub-

networks are further fine-tuned on the training data of person identification. We

elaborate on the details of the proposed method in the following sections.

4.2.2 Synthesizing Optical Flows from Mocap Data

To obtain optical flows with corresponding 3D human skeletons, we propose a novel

approach to synthesizing optical flow sequences from 3D human skeleton sequences in

CMUMocap database. We first generate synthetic dense trajectories with the method

proposed in [33]. Specifically, human body parts between each pair of joints are

1https://mocap.cs.cmu.edu
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(a) (b) (c) (e)(d)

Figure 4.2 An illustration of the process for synthesizing optical flows from 3D
human skeleton data. We first take the 3D human skeletons (a) and approximate
the human body surface with cylinders. The human body surface is projected to 2D
space as shown in (b). Then, we densely sample on the surface to generate dense
trajectories between two frames as shown in (c), where dark blue points are sampled
body surface points and green arrows are displacement vectors. For each pixel, we
use k nearest trajectories to interpolate the flow vector as shown in (d), which
generates the resulting flow image (e).

approximated by cylinders and projected to 2D space, as shown in Fig. 4.2(ab). Then,

human body surfaces are densely sampled over time to obtain the dense trajectories,

as shown in Fig. 4.2(c). Each trajectory consists of L frames of displacement vectors

representing the motion of a pixel over L + 1 frames. Each displacement vector

can be viewed as a flow vector. Therefore, to synthesize optical flows from dense

trajectories, we only need L = 1 frame of dense trajectories since optical flow is

the displacement of each pixel between two neighboring frames. To simulate optical

flows viewed from different viewpoints, we synthesize dense trajectories with various

camera parameters, using orthographic projection. Specifically, we set the polar angle

to θ = π/2 assuming that the person’s videos are taken by cameras at a similar height.

The azimuthal angle φ is set to different values: φ = {0, π/3, 2π/3, π, 4π/3, 5π/3}. To

make optical flows similar to real-world video optical flows, we need to convert the

dense trajectories from the world coordinate system to the image coordinate system.

The spatial position of each trajectory will be converted to the image coordinates,

and each trajectory will be re-scaled as the flow vector for this pixel, based on the

46



www.manaraa.com

ratio of world coordinate system to image coordinate system. We use the center of the

human bounding box as the center of the synthesized optical flow image. However,

the location of a trajectory may be on a sub-pixel, leaving many pixels without flow

vectors, as shown in Fig. 4.2(d). Therefore, we need to interpolate each pixel in the

synthesized flow image. For each pixel, we use its k nearest trajectories to linearly

interpolate the flow vector, based on the distances between the k nearest trajectories

and this pixel. In the experiments, we set k = 4 for synthesizing optical flows. We

show two examples of the interpolated flow vectors in Fig. 4.2(d), where the nearest

trajectories are shown in black and the synthesized flow vectors are shown in red.

For pixels whose nearest trajectory is more than 5 pixels away, we simply set its flow

vector as zero-vector. Figure 4.2(e) shows an example of the resulting optical flow

image, which is visualized using the flow-color encoding in [4].

4.2.3 Sequence-Level Feature Extraction

Feature Extraction from Optical Flows. As shown in Fig. 4.1, we use the

flow-stream sub-networks to extract features from a pair of optical flow sequences

and obtain sequence-level features. The parameters of these two flow-stream sub-

networks are shared. We use the same network architecture as in Long-term Recurrent

Convolutional Networks (LRCN) [23]. The CNN network consists of five convolutional

layers, followed by max-pooling layers and dropout layers. One layer of LSTM is

followed by a dropout layer to avoid overfitting. We add a fully-connected layer after

the LSTM layer to obtain the feature embedding for each optical flow sequence.

Following the preprocessing in LRCN [23], we also formulate the optical flows as

flow images and feed them to the flow-stream sub-networks. Specifically, we use the

horizontal and vertical part of optical flow as the first two channels of the flow image.

The magnitude of optical flow is used as the third channel. The flow images are

resized to 227 × 227 pixels before they are fed to CNN network. Each frame of an
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input optical flow sequence is fed to the CNN first. The CNN features are then used

as input to LSTM, which extracts features for each frame. Through the cell state in

LSTM, information in early time steps can be propagated to later time steps. With

the final full-connected layer, we obtain the frame-level feature embeddings for an

optical flow sequence. All the frame-level features of the sequence are aggregated as

the sequence-level features.

Feature Extraction from 3D Human Skeletons. In this paper, we improve

the sequence-level feature extraction from optical flows by introducing an additional

modality of 3D human skeleton data, which are just the ones used for synthesizing

the optical flows in the other two streams. Each sequence of 3D human skeleton is

represented by T×J×3 coordinates, where T is the number of frames in this sequence

and J is the number of human joints. Since a person’s action/motion is independent

of its spatial position, 3D human skeleton locations are normalized to a person-centric

coordinate system. More specifically, we set the hip joint as the origin and rotate

the coordinates so that the person is facing along positive x-axis in the first frame of

the sequence. The coordinates of the joints are normalized into the range of [0, 1] to

remove subject variance. To extract sequence-level features from 3D human skeleton

sequences, we use two layers of LSTM as shown in Fig. 4.1. This two-layer LSTM is

also referred to as eLSTM following [91], which stands for encoder LSTM. The output

of eLSTM is also embedded through a fully-connected layer. Finally, sequence-level

features of 3D human skeletons are obtained by aggregating each frame’s features.

4.2.4 Network Training

We initialize the parameters of flow-stream sub-networks from LRCN [23] model. The

parameters of skeleton-stream sub-network are randomly initialized using the Xavier

initialization method [28]. To construct a training sample for the proposed network,

we take two optical flow sequences synthesized from the same Mocap sequence as
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a positive pair and two synthesized from different Mocap sequences as a negative

pair, for the flow-stream sub-networks. Each input pair of optical flow sequences are

synthesized from two different views, randomly selected from the pre-specified six

views. Similarly, we feed an optical flow sequence and its original 3D Mocap skeleton

sequence as a positive pair to the second flow-stream sub-network and skeleton-stream

sub-network. An optical flow sequence and a different 3D Mocap skeleton sequence,

which is not used to generate the optical flow sequence, are used as a negative pair.

Because 3D skeleton are independent from the view settings, enforcing the features

from 2D optical flows to be similar to the features from 3DMocap skeletons, which the

2D optical flows are synthesized from, will improve the view-invariance of optical flow

features. During the training process, we simultaneously minimize the contrastive loss

between the pair of flow stream features, as well as between the flow stream features

and the skeleton stream features. The input optical flow sequences to the flow-stream

sub-networks are denoted as v(a) and v(b) respectively. The input 3D human skeleton

sequence is denoted by P. The flow stream feature extraction is represented as a

function Fv(·), and the skeleton stream feature extraction is represented as a function

FP(·). The contrastive losses are defined as follows:

Lvv = y1d
2
vv + (1− y1)max(m1 − dvv, 0)2, (4.1)

dvv =
∥∥∥Fv(v(a))− Fv(v(b))

∥∥∥
2
, (4.2)

LvP = y2d
2
vP + (1− y2)max(m2 − dvP, 0)2, (4.3)

dvP =
∥∥∥Fv(v(b))− FP(P)

∥∥∥
2
. (4.4)

Here, dvv and dvP are Euclidean distances. For positive pairs of optical flow sequences

y1 = 1, the features Fv(v(a)) and Fv(v(b)) are encouraged to be similar, while the

features are encouraged to be separated by the margin m1 for negative pairs y1 = 0.

Similarly, Fv(v(b)) and FP(P) are similar for y2 = 1 and separated by a margin

m2 for y2 = 0. Suppose we have a particular optical flow sequence v(b)
i synthesized
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from Pi, where i is the sample index. Positive pairs of optical flows are obtained

by synthesizing optical flows from Pi with different camera parameters. Negative

pairs are obtained by randomly selecting the optical flows from other 3D skeleton

sequences regardless of camera parameters. Similarly, we use the skeleton sequence

Pi and optical flow sequence v(b)
i to form a positive pair. We randomly select from

human skeleton sequences in the Mocap database other than Pi to form a negative

pair with v(b)
i . We do not use contrastive loss between Fv(v(a)) and FP(P) because

it is implied in the two considered contrastive losses: the one between Fv(v(b)) and

FP(P) and the one between Fv(v(a)) and Fv(v(b)).

Due to the difference between synthetic optical flows and optical flows of real-

world videos, we further fine-tune the network on the training data of each CVPI

video dataset. More specifically, we remove the skeleton stream from the network

since there is no 3D human skeleton information for the training data of videos in

CVPI dataset. We then sample positive pairs and negative pairs of optical flow

sequences similar to sampling synthetic optical flow sequences. The fine-tuning is

accomplished by minimizing contrastive loss between outputs of these two flow-stream

sub-networks. For videos in CVPI datasets, the camera motion introduced by the

movement of camera wearers can lead to some errors in optical flow computation. We

use a simple motion compensation (MC) technique as in [74] to address this issue: we

compute the average optical flow outside the human bounding box for each frame as

the camera motion, which is then subtracted from the optical flow inside the human

bounding box.

4.2.5 Cross-View Person Identification

After training the proposed network, we use the flow-stream sub-network to extract

sequence-level features from optical flows in videos for person identification. The

features of each video are represented by an n × p dimensional vector, where n is
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Figure 4.3 An example of our newly collected SYN dataset. From top to bottom
are the images, the optical flows and the optical flows after motion compensation.
(a) and (b) represent the images/optical flows from two cameras, respectively.

the number of frames in the video and p is the number of outputs in the final fully-

connected layer. Features of the gallery videos are extracted and stored beforehand.

For each probe video, we extract its features and compute the similarities between this

video to all videos in the gallery set. We use the inverse of the Euclidean distance

to measure similarity between videos in a pair. Suppose F (a)
i and F

(b)
j represent

the features of a video from camera a and a video from camera b respectively, the

similarity score between them is defined as follows:

Si,j = 1∥∥∥F (a)
i − F

(b)
j

∥∥∥
2

. (4.5)

The similarity score is further normalized to the range [0,1] as follows:

ScoreTi,j = Si,j
maxi,j Si,j

(4.6)

4.3 Experiments

In this section we evaluate the proposed method on two datasets in [151], SEQ 1 and

SEQ 2, as well as our newly collected dataset, SYN. We compare the proposed method

with three state-of-the-art methods and analyze the effectiveness of the proposed

method.
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SEQ 1 and SEQ 2 contain 114 and 88 pairs of synchronized videos from two

different cameras views respectively. The videos are taken by GoPro cameras which

are mounted on the wearers’ heads. The videos are taken in a football field where

multiple pedestrians are present. There are totally 6 subjects walking around and

recorded by the cameras. Each subject walks for 4 to 26 times and each video has

120 frames. The same person’s videos taken at different times are considered to be

non-matching pairs, since their movements are not synchronized and consistent with

each other. In some videos, the subject is occluded by other pedestrians. All subjects

in SEQ 1 and SEQ 2 are wearing white T-shirts and blue jeans.

We also collect a new dataset, which contains 208 pairs of synchronized videos

from two camera views. We refer to this dataset as SYN. Compared to SEQ 1

and SEQ 2, SYN has more video pairs which can provide more reliable evaluation.

Also, SYN dataset contains less camera motion which can facilitate the analysis of

view-invariant feature learning with less impact by camera motion. The videos are

captured by GoPro cameras in an outdoor environment near a building. There are

totally 14 subjects, each of whom walks for 14 to 15 times. Each video has 120

frames. All subjects in this dataset are wearing dark jackets. In this dataset, there

are no other pedestrians crossing through in each video. Each person in each video is

cropped manually as a detection to obtain fairly tight bounding boxes for experiments.

Figure 4.3 shows an example pair of synchronized videos of the same person captured

by two cameras, together with optical flows visualized as color images using the

flow-color encoding in [76]. The optical flows after motion compensation using the

method in [74] is shown in the bottom of Fig. 4.3, denoted as “flow (MC)". We can

see that the original optical flows are mixed with undesired camera motion in the

background, while the motion-compensated optical flows have much less background

motion, which will improve the motion-based feature extraction.

For evaluation, we follow the generally adopted protocol and split each dataset
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into two subsets of equal size, i.e., one for training and one for testing. We use

Cumulative Matching Characteristics (CMC) as the metric for evaluation. Videos

from one camera are used as probe set and videos from the other camera are used

as gallery set. For each probe video, we compute the similarity score of the true

matching video and find its rank in all videos of gallery set. To obtain more stable

results, we repeat the process over 10 random dataset splits and report the average

performance.

Implementation Details. We use Caffe [52] to implement the proposed Triplet

Network (TN). Specifically, we fine-tuned the flow-stream sub-networks whose param-

eters are initialized from LRCN [23] model. The LRCN model is trained on optical

flow sequences of UCF-101 action recognition dataset. The detailed network archi-

tecture and configuration of the flow-stream sub-network are shown in Fig. 4.4. We

empirically set the last fully-connected layer to 512 units, which outputs the feature

embedding for each video sequence. For skeleton-stream sub-network, we use two

LSTM layers to extract the features, where the first layer contains 1,024 units and

the second layer contains 512 units. This LSTM is also followed by a fully-connected

layer of 512 units. We use 16 time steps in LSTM layers for both flow streams and

skeleton stream, which corresponds to 16 frames. To avoid gradient vanishing and

gradient explosion problems in Back-Propagation Through Time (BPTT), we clip

the gradients to 15 if they are larger than this value. Both the margins of the two

contrastive losses are set to 1.

For training the network, we synthesize 9,654 optical flow sequences from CMU

Mocap database. These optical flow sequences are synthesized with 6 sets of different

camera parameters as described in Section 4.2.3. Each frame of 3D human skeleton

is described by 18 × 3 = 54 coordinates, where 18 is the number of joints used.

In this work, we use equal length of optical flow sequences and 3D human skeleton
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Figure 4.4 The architecture of the flow-stream sub-network.

sequences as input for the proposed network. Specifically, we use 112 frames of 3D

human skeletons and optical flows in the form of triplets. The 3D human skeleton

sequences in the CMU Mocap database have various length ranging from 2 frames to

over 5,000 frames. We segment long sequences into equal-length 112-frame sequences

and discard sequences shorter than 112 frames.

Figure 4.5 shows an example of optical flows synthesized with different camera

camera parameters (φ = {0, π/3, 2π/3, π, 4π/3, 5π/3}) from the 3D human skeleton

sequence. Obviously, the synthesized optical flows are not as real as optical flows

extracted from real-world videos. The background is clean with no camera motion,

and the shape of foreground motion is fairly rough because of the cylinder approxima-

tion for human body parts. Therefore, we need to further fine-tune the flow-stream

sub-networks on real-world optical flow data.

In the experiments, we train the network on an NVIDIA GTX 1070 GPU. The

network is trained on Mocap synthetic optical flow and skeleton dataset for 2 epochs,

which takes about one day. We only train for 2 epochs because many Mocap sequences

are similar and the loss can converge after 2 epochs. We further fine-tune the flow-

stream sub-network on training data of each video dataset for 400 epochs. This takes

about 4 hours for a dataset of 200 image sequences. For testing, feature extraction

and similarity computation between each pair of videos costs less than one second.
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3D skeleton

Figure 4.5 Example of optical flows synthesized from the same 3D MoCap
skeleton with different camera parameters.
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Figure 4.6 Comparison of the resulting CMC using different training data.

4.3.1 Effectiveness of Synthetic Data for Training

As mentioned above, the network training consists of 1) using synthesized optical

flow-data and their 3D skeleton data to train the network, and 2) using real training

videos to fine-tune the flow-stream sub-networks. To evaluate the effectiveness of

using synthetic optical flow dataset and 3D human skeleton dataset in training, we

compare three variants of the proposed method: “video+flow+skel." which runs both

1) and 2); “video+flow" which only uses synthesized optical flow data (without using

3D skeleton data) to training the flow-stream sub-networks, followed by running 2);

and “video" which runs only 2). The evaluation is conducted on all three datasets.

The results are shown in Fig. 4.6. We can see that training with synthetic optical

flows and 3D human skeleton first can improve the performance on all the datasets.

However, using only synthetic optical flow dataset for the first-step training does not

improve the performance. This is mainly caused by the difference between synthetic

optical flow and real-world video optical flow. Overall, adding 3D human skeleton

can benefit the model and improve the matching rates. This proves the effectiveness

of using 3D human skeleton data for CVPI.

To better understand the effect of skeleton data during training, we visualize

in Fig. 4.7 the feature maps of the same person under different cameras using the

proposed network with and without incorporating skeleton data for training. Specif-

ically, we extract the features from the last layer of the proposed network for the
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Figure 4.7 Visualization of the learned features of the same person under different
cameras: (a) without using 3D skeleton data in training, (b) incorporating 3D
skeleton data in training.

same person. In this figure, the horizontal axis represents the frame number and the

vertical axis represents the dimension of features. We can see that the highlighted

areas of the two feature maps in Fig. 4.7(b) are more similar than that of the two

feature maps in Fig. 4.7(a). This indicates that we can extract features with better

view invariance by incorporating the 3D skeleton data in training. We also show an

example of the features of different person under different cameras using the pro-

posed network with and without incorporating skeleton data for training in Fig. 4.8.

Features from the last layer of the proposed network is visualized the same way as

above. The areas highlighted in the red box of the two features maps in Fig. 4.8(a)

are similar to each other, while the areas of the same part in Fig. 4.8(b) are not. By

incorporating 3D skeleton data in training, the network can extract better features

that can discriminate different persons.

4.3.2 Effectiveness of Motion Compensation

To alleviate the adverse effect caused by the motion of wearable cameras, we sub-

tract the average optical flow outside the human bounding box from the optical flow
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Figure 4.8 Visualization of the learned features of different persons under different
cameras: (a) without using 3D skeleton data in training, (b) incorporating 3D
skeleton data in training.

inside human bounding box, as in [74]. This technique is simple yet effective. To

prove this, we compare the performance of the models fine-tuned on training data

with and without motion compensation when computing optical flows. As shown in

Table 4.1, the matching rates at all ranks for all three datasets are improved with

motion compensation. The rank-1 matching rate is improved by a large margin of

more than 7%, which means there is a significant amount of camera motion in this

dataset and the motion compensation method applied is effective.

Table 4.1 Comparison of matching rates (%) of the proposed method with and
without motion compensation (MC).

Rank 1 5 10 20
SEQ 1 w/o MC 72.28 90.88 94.04 98.25
SEQ 1 w MC 79.82 92.28 95.26 97.54
SEQ 2 w/o MC 75.68 86.82 92.05 97.05
SEQ 2 w MC 76.36 87.05 92.73 96.82
SYN w/o MC 71.06 88.17 92.69 96.63
SYN w MC 72.21 90.00 94.90 98.08
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4.3.3 Effect of Video Length

We evaluate how the length of videos affects the final matching rates. Specifically, for

each dataset, we evaluate the rank-1 matching rates given K frames in each video.

We set K from 10 to 100 with the step size of 10. Since each video contains more

than 100 frames, we randomly select K consecutive frames in each video pair for

similarity calculation. Specifically, for a video with K frames, we extract K sets of

frame-level features using the flow-stream sub-network, consisting of CNN and LSTM

networks. The frame-level features of these K frames are aggregated as the sequence-

level features, which are used to compute the similarity to another video for cross-

view person identification. Note that, by extracting frame-level features and then

aggregating over all the frames, the proposed network does not need to be retrained

when video length changes. The results are shown in Fig. 4.9. We can see that, using

more frames from the video improves the matching rates. Notice that the matching

rates of SYN dataset are lower than those of the other two datasets, especially when

very few number of synchronized frames are available. This is because SYN dataset

contains more subjects and it is more difficult to identify the same person from a

larger set of subjects. We can also see that the matching rates do not increase much

after the number of frames reaches 90.

Table 4.2 Comparison of the proposed method with state-of-the-art methods on
SEQ 1, SEQ 2 and SYN dataset in terms of Rank CMC (%).

Dataset SEQ 1 SEQ 2 SYN
CMC Rank 1 5 10 20 1 5 10 20 1 5 10 20
DVR [120] 16.14 50.53 66.84 82.83 11.14 34.09 53.64 77.05 12.69 41.83 59.04 75.87

3DHPE [151] 16.14 50.70 67.02 81.93 17.95 51.82 71.14 89.55 8.65 35.67 50.48 64.52
RFA [133] 68.42 96.84 98.25 99.30 69.77 96.36 98.41 99.32 56.83 92.40 97.02 98.85

GEINet [109] 10.18 32.11 50.53 69.30 4.55 22.95 38.86 59.55 15.29 36.44 48.75 63.17
LB [126] 22.11 60.35 73.51 85.96 19.55 45.68 63.64 80.91 8.37 28.56 40.87 58.27

Ours 79.82 92.28 95.26 97.54 76.36 87.05 92.73 96.82 72.21 90.00 94.90 98.08
Ours+RFA λ:2 79.82 97.19 98.42 99.30 79.77 95.91 98.64 99.32 70.67 96.73 98.56 99.71
Ours+RFA λ:1 85.09 97.02 98.25 99.30 82.05 95.68 97.73 99.32 76.92 97.31 99.33 100

Ours+RFA λ:0.5 87.02 97.37 97.89 98.95 82.05 94.32 96.59 99.32 82.12 98.37 99.33 100
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Figure 4.9 Rank-1 matching rates (%) on videos of different lengths.

4.3.4 Comparison to the State of the Art

We compare the proposed method with several state-of-the-art methods, including

3D pose estimation for person identification (3DHPE) [151], Discriminative Video

Ranking (DVR) [120] and Recurrent Feature Aggregation (RFA) [133]. We also com-

pare with two state-of-the-art gait recognition methods: GEINet [109] and matching

Local features at Bottom layer (LB) [126]. For fair comparison, all the results are

obtained by training and testing using the same dataset split. Since 3DHPE method

in [151] is unsupervised, we only use the test data to evaluate this method. RFA is

an appearance-based method, which takes color and Local Binary Patterns (LBP)

features as input. We resize each frame to the size of 128 × 64 pixels and extract

the color and LBP features to feed to RFA. GEINet and LB are gait-based methods,

which require Gait Energy Image (GEI) [34] as the input. GEI is the averaged sil-

houette of a walking person. We also resize each frame to the size of 128× 64 pixels

and use the state-of-the-art segmentation method Mask R-CNN [36] to extract the

human silhouette at each frame of each video. The results are shown in Table 4.2.

We can see that the gait recognition methods perform much worse than the pro-
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posed method. This is because the gait recognition methods, GEINet and LB, average

human silhouettes along a video sequence with good alignment. For videos captured

by static cameras in existing gait recognition datasets, human silhouettes can be easily

extracted by using background subtraction methods, since there is no camera motion

and the background is clean. However, due to the fact that the videos in the CVPI

datasets are captured by wearable cameras, we can not extract human silhouettes us-

ing a simple background subtraction method. The problem may get even worse when

occlusion occurs in some frames. Actually, we found that even state-of-the-art human

segmentation methods such as Mask R-CNN can not extract human silhouette well.

The proposed method has much higher CMC performance than 3DHPE and DVR.

This is because we fine-tuned the proposed model from LRCN [23] model, which has

been trained on a large amount of data.

We further combine the proposed TN’s output similarity scores with the output

scores of RFA as follows:

Score = ScoreT + λScoreR, (4.7)

where Score is the combined similarity, ScoreT is the normalized similarity score

computed by the proposed TN method, as defined in Eq. (4.6), and ScoreR is the

normalized similarity score computed by the comparison RFA method. By setting

λ = {2, 1, 0.5}, the results are shown in the bottom three rows of Table 4.2. Clearly,

combining RFA’s output with TN’s output can improve the CMC performance sig-

nificantly and the weight λ = 0.5 leads to the best performance. Specifically, the

combination achieves about 7%, 6%, and 10% improvement of rank-1 matching rate

on SEQ 1, SEQ 2, and SYN datasets, respectively. This shows that appearance

features and motion features well complement each other in the proposed CVPI task.

We further conduct an experiment to fuse their output similarity scores with more

different values of λ. More specifically, we fuse the output similarity scores of RFA

and TN on the SYN dataset with λ ∈ [0.1, 10]. The resulting matching rates are
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shown in Fig. 4.10, where the λ values are shown in log scale. It is obvious that

λ < 1 leads to higher matching rates, which indicates the relatively more important

role of the motion features when combined with the appearance features for CVPI.

Specifically, the rank-1 matching rate reaches the maximum value of 83.46% when

λ = 0.3.
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Figure 4.10 Rank-1 matching rates (%) using the combined similarity scores with
different weights. The best rank-1 matching rate 83.46% is achieved when λ = 0.3.

As a purely appearance-based method, distinguishing two walking sequences of

the same subject taken at different times will be difficult for RFA, and thus comparing

it with the proposed method on such sequences is not completely fair. We conduct an

additional experiment for a more fair comparison. For each subject, all the walking

sequences are labeled with the same identity. As SEQ 1, SEQ 2 and SYN datasets

have 6, 6 and 14 subjects, respectively, comparing on these small number of subjects

may not be very informative. We merge the SEQ 1, SEQ 2 and SYN datasets into

one dataset, with 26 subjects in total. We randomly divide the datasets into training
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and testing subsets equally by subjects, 13 subjects for training and 13 subjects for

testing. To obtain more stable results, we repeat the split for 10 times and compute

the average performance. More specifically, for each of the 10 splits during testing,

we select one walking sequence for each subject to form a testing set of 13 paired

sequences for evaluation, where each identity only appears in one video pair. As the

subject may walk 4 to 26 times, we use the maximum times a subject walks to repeat

this selection process. Finally, we obtained 284 such testing sets for evaluation. We

also combine the proposed method by fusing the similarity scores as in Eq. (4.7) with

λ = {2, 1, 0.5}. We also compare with GEINet [109] and LB [126]. The results are

shown in Table 4.3. We can see that the two gait-based methods perform poorly. This

is because the GEI images are averaged human silhouettes (masks), which are not

accurately segmented due to camera motion. The proposed method has slight lower

matching rates than RFA (less than 3% in rank-1 CMC). Nevertheless, combining the

proposed method and RFA achieves better results, which indicates that the proposed

motion features well complement the widely used appearance features. Specifically,

λ = 1.0 achieves the rank-1 matching rate of 65.82%.

Table 4.3 Comparison of the RFA with the proposed method on the merged
dataset in terms of Rank CMC (%).

Rank 1 5 10 13
GEINet [109] 31.18 73.48 90.25 100

LB [126] 26.98 74.38 93.93 100
RFA 56.50 96.40 100 100

Proposed 53.95 92.36 99.57 100
Proposed+RFA (λ = 2) 65.11 96.83 100 100
Proposed+RFA (λ = 1) 65.82 96.32 100 100
Proposed+RFA (λ = 0.5) 65.63 95.67 100 100

4.3.5 Effect of Synchronization Error

In this section, we study the influence of synchronization error on the resulting match-

ing rates in terms of CMC. Specifically, for each pair of synchronized videos, we shift
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Table 4.4 Effect of synchronization error on the rank-1 matching rates in terms of
Rank CMC(%). The rank-1 matching rates without synchronization error (∆t = 0)
for SEQ 1, SEQ 2 and SYN are 79.82%, 76.36% and 72.21%, respectively.

∆t 1 2 3 4 5
SEQ 1 78.16 72.64 64.21 55.88 49.39
SEQ 2 75.91 75.57 74.66 73.30 72.05
SYN 68.08 56.11 39.23 27.07 18.95
∆t 6 7 8 9 10

SEQ 1 43.42 39.04 36.67 33.60 31.93
SEQ 2 70.11 68.64 66.48 63.75 60.69
SYN 13.75 10.39 8.22 7.21 7.02

either one in the pair by ∆t = 1, 2, . . . , 10 frames. The extracted features based on

the shifted video pairs are then used to compute the pair-wise similarity scores to

obtain the rank-1 matching rates for all three datasets. The results are shown in

Table 4.4. Note that, the rank-1 matching rate of SEQ 2 is always the highest, while

SYN is always the lowest. This is simply because SYN dataset has the largest number

of subjects in the gallery set while SEQ 2 dataset has the smallest. We can see from

Table 4.4 that, the rank-1 matching rates drop as the synchronization error increases.

When the synchronization error reaches 10 frames, the rank-1 matching rates are

31.93%, 60.69% and 7.02% for SEQ 1, SEQ 2 and SYN datasets, respectively. It

indicates that the synchronization error is harmful to the performance.

4.3.6 Qualitative Results

In this section we discuss several correct and incorrect matching examples, as shown

in Fig. 4.11. Examples in three columns are from SEQ 1, SEQ 2 and SYN datasets

respectively. Correct matching examples are shown in the bottom two rows, while

incorrect ones are shown in the top two rows. Probe sequences are in the first and

third rows. For the correct matching examples, all pairs of persons have consistent

movement. For the failure case of SEQ 1 example, these two persons are walking very

consistently though they are not the same person. It is also easy to confuse motion
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(a) SEQ 1 (b) SEQ 2 (c) SYN

Figure 4.11 Matching examples. (a), (b), (c) are from SEQ 1, SEQ 2 and SYN
datasets respectively. Top two rows show the failure matching examples, while
bottom two rows correspond to successful matching examples.

of the left leg with the right leg because of the ambiguity in projecting 3D human

skeleton onto 2D image planes. As shown in the failure case of SEQ 2 example, these

two persons have very similar motions. While the person in probe video moves his

left leg, the person in the matched gallery video moves his right leg. The incorrect

matching example from SYN dataset can be caused by the variance of features in the

true matching gallery video. Camera motion is another factor that can corrupt the

proposed method, which relies on motion information.

4.3.7 Cross-Dataset Testing

We also investigate the proposed method’s generality by exploring the cross-dataset

performance. Specifically, we first train the proposed TN network on synthetic Mocap

optical flow and skeleton dataset, using LRCN model for initialization. Then, we fine-

tune this model on SEQ 1 dataset and test on SEQ 2 dataset. To better understand

the performance of the proposed method, we compare to TN model without Mocap

data for training and RFA [133]. The results are shown in Table 4.5.

Clearly, the cross-dataset performance is worse than the within-dataset perfor-
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Table 4.5 Cross-dataset performance in terms of Rank CMC(%).

Rank 1 5 10 20
TN w Mocap 11.36 25.00 38.64 63.64
TN w/o Mocap 4.55 11.36 27.27 50.00

RFA [133] 5.00 14.77 32.50 61.14

mance due to the dataset bias. Specifically, SEQ 1 and SEQ 2 datasets are captured

at the same scene, in a football field. However, camera wearers are different and

may move differently, which results in different camera motion patterns in these two

datasets. Another reason is that camera wearer may be standing close to or far away

from the subject. Then, the person will have different sizes in the video. Also, cam-

era wearers can have different heights and may show different angles when viewing

a subject, as shown in Fig. 4.12. Training the proposed triplet network flow-streams

on one dataset may not generalize very well on the other dataset. As the synthetic

optical flows are synthesized without considering these differences, training the pro-

posed network with 3D Mocap data and synthetic optical flows could not well address

the generalization problem between these two real datasets. Nevertheless, we can see

that the proposed method improves the matching rates with additional 3D Mocap

data for training. This proves the proposed method with 3D Mocap data can improve

view-invariant feature learning and have better generality.

(a) SEQ 1 (b) SEQ 2

Figure 4.12 An example of videos from SEQ 1 and SEQ 2 datasets.
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4.4 Chapter Summary

In this chapter, we studied the Cross-View Person Identification (CVPI) problem

by identifying the same person in temporally synchronized videos taken by different

wearable cameras. We proposed a Triplet Network (TN) for CVPI using only mo-

tion information. We also proposed to synthesize optical flow dataset from CMU

Mocap database for training the network, where the underlying 3D human skeleton

data are used as a third stream of the proposed network, which we found that can

help learn more view-invariant features for person identification. Experiments on

three datasets showed that, using only motion information, the proposed method can

achieve comparable results with the state-of-the-art methods. Further combination

of the proposed method with an appearance-based method achieves the new state-

of-the-art performance. From the experimental results, we can also conclude that

motion features and appearance features are complementary to each other for CVPI.
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Chapter 5

Visible-Thermal Person Re-Identification
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5.1 Motivation

Visible-thermal person re-identification (VT-reID) aims to match persons from images

taken by visible cameras under normal illumination condition and thermal cameras

under poor illumination condition such as during night time. Compared to person

re-identification between visible images, VT-reID is even more challenging because of

the lack of information in thermal images. For visible images, colors can provide rich

information for identification, which are not available in thermal images. Therefore,

different people under thermal cameras are more difficult to distinguish.

VT-reID aims to match persons across images taken by visible cameras under

normal illumination condition and thermal cameras under poor illumination condition

such as during night time. As thermal images lack color information due to the

difference of illumination condition and imaging process, one major challenge of VT-

reID is the semantic domain discrepancy between visible images and thermal images.

Previous efforts [124, 137, 138, 17] seek to address this problem by learning domain-

independent features using CNNs. Specifically, two-stream networks [137, 138], one-

stream network using zero-padding [124] are trained with identity loss, contrastive

loss [14] and/or triplet loss [106]. These approaches generally minimize the domain

discrepancy by constraining features of the same person to be close to each other

and features of different persons to be distant from each other, across visible and

thermal domains. However, these constraints are applied at the sample level, where

features of each sample pair or triplet of images in the training set are used. With

hard sample mining, this can over-emphasize certain samples, which can mislead the

network training. For example, if a pair of images of the same person are too different,

their features will be mined more often than others and forced to be similar. Because

of this, the convergence of the network can be disrupted. Network training will get

even worse if the training set contains wrongly labeled samples.

In this research, we propose to learn domain-independent features for visible-
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thermal person re-identifcation with class-level constraints to alleviate this problem,

in which each person is treated as a class. The intuition is to reduce the influence of

individual samples that are too hard to identify or even wrongly-labeled, by weighing

all samples within each class. Specifically, we train a two-stream CNN network to

extract features from visible and thermal images separately. For each person, we learn

one center from features in visible domain and one center from features in thermal

domain, with a new relaxed version of center loss [123]. Then, we apply the pull and

push constraints to the centers of the same or different persons in visible and thermal

domains. More specifically, we enforce centers of the same person in visible domain

and thermal domain to be close to each other, and centers of different persons to

be distant from each other. Furthermore, for two different persons, the inter-class

difference between their centers in the visible domain should be similar to that in the

thermal domain. We formulate these class-level constraints as class-level supervision

to train the two-stream CNN network, which is later used to extract features from

visible and thermal images separately for person re-identification.

5.2 Proposed Method

5.2.1 Overview

We use a two-stream Convolutional Neural Network (CNN) to extract features from

visible and thermal images separately. As shown in Fig. 5.1, the network takes a

mini-batch of visible images and thermal images of corresponding persons as input.

The output features from visible and thermal images are used to learn centers in

visible and thermal domains for each person in the mini-batch, using a relaxed version

of center loss [123], termed Relaxed Center Loss. As shown in Fig. 5.2, for two

different persons, we use two centers to represent each one of them in the visible

and thermal domains, respectively. We then impose constraints on the four centers

as class-level supervision to learn domain-independent features. More specifically,
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we pull the centers of the same person in visible and thermal domains close to each

other, and push the centers of different persons away from each other. These two

constraints are formulated as loss functions and named intra-class loss and inter-class

loss, respectively. Furthermore, for the two different persons as shown in Fig. 5.2, the

inter-class difference between their centers in the visible domain should be similar to

that in the thermal domain. We formulate this constraint as another loss and name

it center-vector loss. The intra-class loss, inter-class loss and center-vector loss, as

a group, are called Class-Level Domain Adaptation (CLDA) losses considering the

similar nature to domain adaptation. The two-stream CNN network is trained using

identity loss, relaxed center loss, and CLDA losses, as shown in Fig. 5.1. More details

are described in the following sections.

weight sharing

Convolution + Max-Pooling + ReLU FC

Convolution + Max-Pooling + ReLU FC

Visible images

Thermal images

Identity loss
+

Relaxed center loss
+

CLDA losses

Figure 5.1 An illustration of the proposed method using two-stream Convolutional
Neural Network. The network takes a mini-batch of visible and thermal images of
corresponding persons as input. The extracted features are then used to learn
centers in visible and thermal domains for the persons involved in the mini-batch.
Identity loss, relaxed center loss and class-level domain adaptation (CLDA) losses
are used to train the two-stream CNN network.

5.2.2 Two-Stream Convolutional Neural Network

To extract features from visible and thermal images, we need two different Convolu-

tional Neural Networks with different parameters, since visible and thermal images are

from different modalities. In this paper, we use two-stream CNN network, in which
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Two-Stream CNN

Person a
visible

Person a
thermal

Person b
visible

Person b
thermal

pull pull

push

push

centers of person a

samples of person a

centers of person b

samples of preson b

minimize || ||-( ) -( )-

Figure 5.2 An illustration of the proposed class-level domain adaptation (CLDA)
losses. For each person in the mini-batch, we update the centers of this person in
both visible and thermal domains, using the relaxed center loss. Then, we compute
the CLDA losses for each quadruplet, consisting of intra-class loss, inter-class loss
and center-vector loss.

the two streams are used for visible and thermal images, respectively. Both streams

use AlexNet [58] as the backbone architecture, with exactly the same configuration.

Specifically, as shown in Fig. 5.1, each stream contains all five convolutional layers

and the first fully-connected layer from AlexNet, followed by a batch normalization

layer [50]. An additional fully-connected layer, which is shared by both streams, is

used to embed the features extracted from both visible and thermal images into a

shared feature space. The embedded features are further L2-normalized. For classifi-
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cation, a shared fully-connected layer is used to predict the class probabilities. We use

cross-entropy loss as the identity loss for classification. Due to the limited training

data, we initialize the parameters of each stream with the AlexNet model pretrained

on the ImageNet dataset [20].

5.2.3 Relaxed Center Loss

Center loss [123] is first proposed to learn centers of each class to reduce intra-class

variation. For features of the i-th training sample xi with label yi, the center loss is

defined as:

Lc = 1
2‖xi − cyi‖

2
2, (5.1)

where xi ∈ Rd is the extracted deep features, cyi ∈ Rd is the center of class yi and

d is the dimension of features. However, center loss enforces to pull all samples of a

class to the center, which collapses the whole class into a single point in the feature

space. This constraint is too strict and impractical. Therefore, we propose Relaxed

Center Loss by only penalizing samples whose distances to the corresponding centers

are larger than a predefined threshold. Specifically, the relaxed center loss is defined

as:

Lrc = max(1
2‖xi − cyi‖

2
2 − r, 0), (5.2)

where r is the predefined threshold. Ideally, the center of each class is computed

as the average of the features of all training samples within this class. However, it

is impractical and inefficient because of limited memory. Therefore, we update the

center of class k iteratively with features in mini-batches by [123]:

ct+1
k = ctk − α∆ctk, (5.3)

∆ctk =
∑M
i=1 δ(yi = k) · (ck − xi)
1 +∑M

i=1 δ(yi = k)
, (5.4)

where δ(condition) = 1 if the condition is satisfied and δ(condition) = 0 if not. t

represents the t-th training iteration and M is the batch size. α is the learning rate
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of centers, which is set to [0, 1] to avoid large perturbations. The gradient of Lrc with

respect to xi is computed as:

∂Lrc
∂xi

=


xi − cyi if 1

2‖xi − cyi‖
2
2 > r

0, otherwise.
(5.5)

In this paper, we use the relaxed center loss to learn centers for each person in both

visible and thermal domains.

5.2.4 Class-Level Domain Adaptation Losses

Suppose we have N different persons in the training set. For a person with label

k ∈ {1, 2, . . . , N}, the centers in visible and thermal domains are denoted as cV,k and

cT,k, where V and T stand for visible and thermal domains, respectively. Similarly,

the centers in visible and thermal domains for person l (l 6= k) are denoted as cV,l

and cT,l, respectively. We define the intra-class loss as:

Lintra = 1
2

N∑
k=1
‖cV,k − cT,k‖2

2, (5.6)

, and the inter-class loss is defined as:

Linter = 1
2

N∑
k=1

N∑
l=1,l 6=k

max(m− ‖cV,k − cV,l‖2
2, 0)

+1
2

N∑
k=1

N∑
l=1,l 6=k

max(m− ‖cT,k − cT,l‖2
2, 0),

(5.7)

where m is the margin which separates the centers of different persons. We define

the center-vector loss as:

Lcv = 1
2

N∑
k=1

N∑
l=1,l 6=k

‖(cV,k − cV,l)− (cT,k − cT,l)‖2
2. (5.8)

However, as mentioned earlier, the centers can not be computed from all the

training samples at once. Therefore, we update centers for each person in visible and

thermal domains iteratively. As shown in Fig. 5.1, the input for the two-stream net-

work is a mini-batch of visible and thermal images of corresponding persons. Features
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from visible and thermal images are extracted by the visible and thermal streams,

respectively. The centers of each person in visible and thermal domains are updated

as in Eq. (5.3) and (5.4) using the features in the mini-batch. More specifically, the

centers are updated as follows:

ct+1
D,yi′

= ctD,yi′ − α∆ctD,yi′ , (5.9)

where D ∈ {V, T} is the domain indicator, i′ ∈ {i, j}, and ∆ctD,yi′ is the update for

the center of sample i′ in domain D computed from the whole mini-batch at iteration

t.

The proposed CLDA losses are also computed based on mini-batches. As shown in

Fig. 5.2, we form a quadruplet, consisting of two images of the two different persons.

We denote their corresponding deep features as xV,i, xV,j, xT,i and xT,j, and their

labels as yi and yj (yi 6= yj). The proposed CLDA losses are then computed based on

the centers and features from the quadruplets in the mini-batch. More specifically, the

total loss is summed from the losses for each quadruplet in the mini-batch. Therefore,

we discuss the proposed CLDA losses for each quadruplet. By substituting the center

updates in Eq. (5.9), the CLDA losses for each quadruplet at iteration t are defined

as follows:

Lintra =
∑

i′∈{i,j}

1
2‖(c

t
V,yi′
− α∆ctV,yi′ )

−(ctT,yi′ − α∆ctT,yi′ )‖
2
2,

(5.10)

Linter = 1
2 max(m− ‖dV ‖2

2, 0)

+1
2 max(m− ‖dT‖2

2, 0),
(5.11)

Lcv = 1
2‖dcv‖

2
2, (5.12)
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where

dV = (ctV,yi − α∆ctV,yi)− (ctV,yj − α∆ctV,yj),

dT = (ctT,yi − α∆ctT,yi)− (ctT,yj − α∆ctT,yj),

dcv = dV − dT .

(5.13)

Using the chain rule for derivatives, we can derive the gradients from the proposed

CLDA losses for the features of each quadruplet as follows:

∂Lintra
∂xD,i′

= (−1)δ(D=T ) ·
α(ctV,yi′ − ctT,yi′ − α∆ctV,yi′ + α∆ctT,yi′ )

1 +∑M
n=1 δ(yn = yi′)

, (5.14)

∂Linter
∂xD,i′

=


(−1)δ(D=V )α·dD

1+
∑M

n=1 δ(yn=yi′ )
if m− ‖dD‖2

2 > 0,

0 otherwise,
(5.15)

∂Lcv
∂xD,i′

= (−1)δ(D=T )·δ(i′=j)α · dcv
1 +∑M

n=1 δ(yn = yi)
, (5.16)

where D ∈ {V, T} and i′ ∈ {i, j}.

For training, we combine identity loss, relaxed center loss and the proposed CLDA

losses as follows:

Ltotal = Ls + λ1Lrc + λ2Lintra + λ3Linter + λ4Lcv (5.17)

where Ls is the cross-entropy identity loss and λ1, λ2, λ3, λ4 are the weights for

balancing these losses.

5.3 Experiments

5.3.1 Experimental Settings

Datasets and evaluation metrics We evaluate the proposed method for visible-

thermal person re-identification on two public datasets: SYSU-MM01 dataset [124]

and RegDB dataset [97].
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SYSU-MM01 dataset is collected from 491 persons with 6 cameras, including four

visible cameras and two thermal cameras. Each person is captured by at least two

cameras. In total, there are 22,258 visible images and 11,909 thermal images. This

dataset is more challenging since some cameras are placed in indoor environment and

others in outdoor environment. This dataset has a fixed split with 296 identities for

training, 99 for validation and 96 for testing. We use images from both training and

validation sets to train the two-stream CNN network as in [138]. For testing, visible

images are used as the gallery set and thermal images are used as the probe set. We

evaluate the proposed method using the all-search mode under single-shot setting

since it is the most challenging case as mentioned in [124].

RegDB dataset is collected from 412 persons from different views with respect to

each person’s body, such as front, back and side views. For each person, 10 visible

images and 10 thermal images are captured with a dual-camera system including a

visible camera and a thermal camera. We follow the evaluation protocol in [137] and

randomly split the dataset into two subsets of equal size, one for training and one

for testing. For testing, we mainly use visible images as the gallery set and thermal

images as the probe set. To obtain more stable results, we repeat this process over

10 random dataset splits and report the average results.

To evaluate the proposed method and comparison methods, we use Cumulative

Matching Characteristics (CMC) and mean Average Precision (mAP) as the metrics.

mAP is adopted because there might be multiple matching images in the gallery set

for a probe image [152].

Implementation details In this paper, we use AlexNet as the backbone for the

two-stream CNN network, both streams of which share the same network architec-

ture. Specifically, each stream contain 5 convolution layers, 3 max-pooling layers, 3

fully-connected (FC) layer and 1 batch normalization layer, with the configuration
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Table 5.1 Effects of the proposed CLDA losses, evaluated on both SYSU-MM01
and RegDB datasets in terms of CMC (%) and mAP (%).

Datasets SYSU-MM01 RegDB
Lintra Linter Lcv R=1 R=10 R=20 mAP R=1 R=10 R=20 mAP

19.48 63.89 80.85 22.87 28.57 50.23 61.36 28.57
18.32 62.61 79.59 22.09 24.58 46.64 57.64 26.25
20.03 64.59 81.55 23.37 28.34 51.23 62.58 29.51
19.74 64.21 81.69 23.03 28.73 52.08 63.66 29.86
19.34 63.41 80.70 22.67 27.54 49.68 61.38 28.61
20.34 64.98 82.11 23.47 28.49 51.90 63.23 29.83

Proposed Proposed w/o center-vector lossProposed w/o intra-class loss Proposed w/o inter-class loss

Figure 5.3 t-SNE embedding of features of visible images extracted models trained
with different losses.

in the following order: 1) conv11x11, stride=4, feature maps=96, 2) maxpool3x3,

stride=2, 3) conv5x5, stride=1, feature maps=256, 4) maxpool3x3, stride=2, 5)

conv3x3, stride=1, feature maps=384, 6) conv3x3, stride=1, feature maps=384, 7)

conv3x3, stride=1, feature maps=256, 8) fc4096, 9) batch-norm, 10) fc1024, 11) fc

and 12) softmax. The number of neurons in the final FC layer is set as the number

of identities, which is 395 for SYSU-MM01 dataset and 206 for RegDB dataset. The

parameters of layers 1) to 9) of the two streams are not shared, which are used to

extract features from visible and thermal images separately. The parameters of FC

layers 10) and 11) are shared by the two streams, which are used to embed visible

and thermal features into a shared feature space and predict the class probabilities,

respectively. The features in FC layer 10) are L2-normalized before being used to

update centers and compute relaxed center loss as well as the proposed class-level

78



www.manaraa.com

domain adaptation losses. The softmax layer is used to compute identity loss. After

the two-stream CNN network is trained, we extract features from visible and ther-

mal images from the output of FC layer 10) separately. The features of visible and

thermal images are then used to compute pairwise Euclidean distances for evaluation.

We use PyTorch1 to implement and train the two-stream CNN network. The

parameters of layer 1) to layer 8) are initialized from the AlexNet model pretrained

on ImageNet dataset, while the parameters of other layers are randomly initialized.

The marginm for the inter-class loss is set to 0.9 and the threshold r for relaxed center

loss is set to 0.1. In our experiments, we empirically set λ1 = λ2 = λ3 = λ4 = 1 for

Eq. (5.17) to combine the losses for training the network. Since we use AlexNet as

the backbone for the two-stream CNN network, the input image has to be resized to

227×227 pixels. During training, we resize each image (visible or thermal) to 256×256

pixels and randomly crop to 227× 227 pixels for data augmentation. The batch size

is set to 64. The two-stream CNN network is first trained for 20,000 iterations and

2,000 iterations on SYSU-MM01 dataset and RegDB dataset, respectively. Then,

the network is further fine-tuned for 25,000 iterations and 3,000 iterations on SYSU-

MM01 dataset and RegDB dataset, respectively. The learning rate is set to 0.01

initially and decayed polynomially until zero.

5.3.2 Effectiveness of Class-Level Domain Adaptation Losses

We first evaluate the effectiveness of the proposed method, which trains the two-

stream CNN network using Class-Level Domain Adaptation (CLDA) losses together

with identity loss and relaxed center loss. We analyze the effect of each term in the

CLDA losses. Specifically, we remove one or two terms at a time as a variant of

the proposed method to train the two-stream CNN network. The experiment results

on both SYSU-MM01 and RegDB datasets are reported in Table 5.1. On SYSU-

1https://pytorch.org
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MM01 dataset, the proposed method obtains the best performance with all three loss

terms included for training: intra-class loss, inter-class loss and center-vector loss.

Removing intra-class loss or inter-class loss leads to a slight drop, while removing

center-vector loss leads to a larger drop. This is because the center-vector loss poses

similar constraint to intra-class loss while incorporating inter-class center-vectors.

Removing intra-class loss and center-vector loss at the same time results in the worst

performance, since inter-class loss alone cannot introduce constraints to bridge the

gap between visible and thermal features. Inter-class loss can only pushes features of

different persons away, while intra-class loss is more dedicated to extracting domain-

independent features by enforcing visible and thermal features to be similar for the

same persons. We can see that all three losses are useful. On RegDB dataset, the

best result is achieved by the model trained without inter-class loss. This may be

because images of the same person in RegDB dataset have very clean background

and share similar poses, and the inter-class loss is not of much help.

To better understand the effects of these loss terms, we also visualize the features

learned by the proposed method with all CLDA losses or with one term removed

at a time for training. Specifically, we choose 10 identities in the test set in the

SYSU-MM01 dataset and extract the features from visible images of these identities.

The features are embedded into 2D space using t-SNE embedding [90], as shown in

Fig. 5.3. We can see that, without intra-class or inter-class loss, the features learned

are less distinctive. The use of center-vector loss does not result in obvious difference

in the embedded features. This may be because the difference cannot be reflected

in the lower dimension which the features are embedded into. Nevertheless, the

quantitative results in Table. 5.1 prove the usefulness of the center-vector loss.
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5.3.3 Effectiveness of Relaxed Center Loss

We demonstrate the effectiveness of the proposed relaxed center loss, by comparing

the proposed method using center loss [123] or relaxed center loss on both SYSU-

MM01 and RegDB datasets. Specifically, we replace the relaxed center loss with the

original center loss and train for 25,000 iterations and 3,000 iterations on SYSU-MM01

and RegDB datasets, respectively. The comparison results are shown in Table 5.2.

Obviously, the proposed method performs better with the relaxed center loss than

center loss. As mentioned before, center loss enforces to pull features of all samples in

a class to the center, which tries to collapse the whole class into a single point in the

feature space. Such a constraint is too strict and impractical. During our experiments,

we notice that the center loss is much higher than both intra-class loss and inter-class

loss as they converge. This means the network is more focused on minimizing the

center loss, which is unnecessary for learning domain-independent features. Relaxed

center loss, however, converges to a smaller value than both intra-class and inter-class

losses, which makes the network focus on learning domain-independent features from

visible and thermal images. Consequently, the use of relaxed center loss leads to

better matching results in terms of both CMC and mAP.

Table 5.2 Comparison of the proposed method using center loss and relaxed center
loss on SYSU-MM01 dataset in terms of CMC (%) and mAP (%).

SYSU-MM01 R=1 R=5 R=10 R=20 mAP
Ours w. Lc 19.70 47.36 63.75 80.69 22.99
Ours w. Lrc 20.34 48.59 64.98 82.11 23.47

RegDB R=1 R=5 R=10 R=20 mAP
Ours w. Lc 27.22 39.89 48.40 60.07 28.93
Ours w. Lrc 28.49 42.72 51.90 63.23 29.83
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5.3.4 Comparison and Combination of Class-Level Supervision and

Sample-Level Supervision

We compare the proposed method, using class-level supervision, with BDTR [138],

which trains the network with identity loss and triplet loss at the sample level. We

further incorporate the sample-level triplet loss into the proposed method, as a com-

bination of class-level supervision and sample-level supervision. The triplet loss is

incorporated into the proposed method with a weight λt as follows:

L′total = Ltotal + λtLt, (5.18)

where Lt is the triplet loss used in [138].

We evaluate the proposed method, BDTR, and their combination using different

values of λt on both SYSU-MM01 and RegDB datasets. For fair comparison, we

use PyTorch to re-implement the BDTR method following the steps in [138]. The

results are shown in Table 5.3. Compared to the original BDTR, the re-implemented

BDTR performs worse on RegDB dataset but better on SYSU-MM01 dataset. This is

because the original BDTR is implemented using TensorFlow package2. Besides, the

parameters of the two-stream CNN network is initialized from a model pretrained on

ImageNet dataset on the PyTorch platform3, which could also result in the difference

in performance. From now on, we use the re-implemented BDTR as the reference for

further analysis in this and later experiments for fair comparison.

Compared to BDTR, the proposed method achieves higher CMC matching rates

and mAP. This demonstrates that, the proposed class-level domain adaptation losses

are more effective for learning domain-independent features than sample-level triplet

loss for visible-thermal person re-identification. The incorporation of sample-level

triplet loss into the proposed method can result in better CMC matching rates and

2https://www.tensorflow.org

3https://github.com/jiecaoyu/pytorch_imagenet
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mAP’s. Specifically, λt = 0.1 achieves the best performance on SYSU-MM01 dataset

and λt = 0.5 achieves the best mAP on RegDB dataset. This proves that both

class-level and sample-level supervisions are useful for learning domain-independent

features and that they are complementary to each other.

Table 5.3 Comparison of the proposed method, BDTR and their combination on
SYSU-MM01 and RegDB datasets in terms of CMC (%) and mAP (%).

SYSU-MM01 R=1 R=10 R=20 mAP
BDTR [138] 17.01 55.43 71.96 19.66

BDTR (re-implemented) 19.53 64.74 81.05 23.13
Ours 20.34 64.98 82.11 23.47

Ours+triplet λt = 1.0 20.34 65.51 82.25 23.80
Ours+triplet λt = 0.5 20.20 65.25 82.11 23.81
Ours+triplet λt = 0.1 20.70 65.27 82.38 23.86

RegDB R=1 R=10 R=20 mAP
BDTR [138] 33.47 58.42 67.52 31.83

BDTR (re-implemented) 26.90 49.00 59.73 28.48
Ours 28.49 51.90 63.23 29.83

Ours+triplet λt = 1.0 28.85 50.91 62.03 30.04
Ours+triplet λt = 0.5 28.72 51.45 62.47 30.04
Ours+triplet λt = 0.1 28.85 51.96 62.64 29.92

Table 5.4 Comparison of the proposed method with several state-of-the-art
methods on SYSU-MM01 dataset and RegDB dataset in terms of CMC (%) and
mAP (%).

Datasets SYSU-MM01 RegDB
Method R=1 R=10 R=20 mAP R=1 R=10 R=20 mAP

Zero-Padding [124] 14.80 54.12 71.33 15.95 17.75 34.21 44.35 18.90
TONE [137] 12.52 50.72 68.60 14.42 16.87 34.03 44.10 14.92

TONE+XQDA 14.01 52.78 69.06 15.97 21.94 45.05 55.73 21.80
TONE+MLAPG 12.43 50.64 68.72 14.61 17.82 40.29 49.73 18.03
TONE+SCDL 6.58 35.62 56.32 10.32 8.06 22.09 28.89 10.03
TONE+rCDL 7.02 37.31 57.64 10.46 9.47 22.96 29.42 10.26

TONE+HCML [137] 14.32 53.16 69.17 16.16 24.44 47.53 56.78 20.80
BDTR 19.53 64.74 81.05 23.13 26.90 49.00 59.73 28.48
Ours 20.34 64.98 82.11 23.47 28.49 51.90 63.23 29.83

Ours+triplet λt = 0.1 20.70 65.27 82.38 23.86 28.85 51.96 62.64 29.92
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5.3.5 Comparison with State of the Art

In this section, we compare the performances of the proposed method with sev-

eral state-of-the-art methods on both SYSU-MM01 and RegDB datasets: Zero-

Padding [124], TONE+HCML [137] and BDTR [138]. Zero-Padding is a one-stream

network, which can be used to extract features from both visible and thermal im-

ages. TONE+HCML is a two-stage framework, which implements feature extraction

and metric learning separately. We also report some results from [138], which com-

bine TONE with other metric learning methods, including XQDA [72], MLAPG [73],

SCDL [119], rCDL [46]. BDTR also trains a two-stream CNN network, as in the pro-

posed method, with sample-level triplet loss and identity loss. We also incorporate

the triplet loss into the proposed method with λt = 0.1 for Eq. (5.18).

Compared to Zero-Padding, TONE, TONE+HCML or TONE with other met-

ric learning methods, the proposed method achieves much better performance. We

can see that the proposed method achieves better performance than BDTR on both

SYSU-MM01 and RegDB datasets. We also notice that the proposed method out-

performs the BDTR method by a slightly larger margin on RegDB dataset than on

SYSU-MM01 dataset. This can be explained by the difference between the natures

of BDTR and the proposed method. BDTR uses triplet loss, which is a sample-level

supervision and could over-emphasize the importance of each sample for small-scale

datasets such as RegDB. The proposed class-level supervision can alleviate this ef-

fect. However, for a larger datasets such as SYSU-MM01, the importance of each

sample is automatically reduced and the improvement of class-level supervision is re-

duced accordingly. The combination of both class-level supervision and sample-level

supervision can further improve the results. Specifically, the combination achieves

1.37% and 1.95% improvement of rank-1 matching rate for SYSU-MM01 dataset and

RegDB dataset, respectively. This demonstrates that the class-level supervision and

sample-level supervision are both useful for learning domain-independent features for
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(a) (b)

Figure 5.4 Sample visible and thermal images of the same person in (a) RegDB
dataset and (b) SYSU-MM01 dataset.

visible-thermal person re-identification.

We also observe the proposed method and all comparison methods perform much

better on RegDB dataset than SYSU-MM01 dataset. This is mainly because there

are more identities in SYSU-MM01 dataset than in RegDB dataset and it is more

difficult to identify the true match from a larger gallery set. Besides, compared to

SYSU-MM01 dataset, visible and thermal images of the same identities from RegDB

dataset have very clean background and similar poses as shown in Fig. 5.4, which

makes the re-identification easier. Furthermore, the persons in images of RegDB

dataset are more well-aligned than those in SYSU-MM01 dataset. In some extreme

occasions, images from SYSU-MM01 dataset do not even have any person at all. All

these challenges lead to the lower matching performance on SYSU-MM01 dataset

than on RegDB dataset.

85



www.manaraa.com

5.3.6 Different Query Settings

We also evaluate the performance of different query settings on RegDB dataset as

in [137]. Specifically, we use visible images as the gallery set under the “Visible to

Thermal" setting and thermal images as the gallery set under the “Thermal to Visible"

setting. As shown in Table 5.5, we compare the performances of the proposed method,

BDTR and their combination using λt = 0.1. Under both settings, the proposed

method achieves rank-1 matching rate of around 28% and mAP of around 29%.

Also, the proposed method outperforms BDTR in both cases. Combining BDTR

with the proposed method results in better performance. As discussed before, the

class-level supervision and the sample-level supervision are both useful for learning

domain-independent features for visible-thermal person re-identification.

Table 5.5 Evaluation of the proposed method, BDTR and their combination in
different query settings on RegDB dataset in terms of CMC (%) and mAP (%).

Setting Visible to Thermal
Method R=1 R=10 R=20 mAP
BDTR 26.90 49.00 59.73 28.48
Ours 28.49 51.90 63.23 29.83
Ours+BDTR λt = 0.1 28.85 51.96 62.64 29.92
Setting Thermal to Visible
Method R=1 R=10 R=20 mAP
BDTR 26.02 47.57 60.15 28.09
Ours 27.76 51.09 63.43 29.61
Ours+BDTR λt = 0.1 27.82 51.20 63.27 29.67

5.4 Chapter Summary

In this chapter, we studied the visible-thermal person re-identification problem. We

propose class-level supervision to train a CNN-based two-stream network. Specifi-

cally, we learn a center for each person in each domain (visible and thermal) with a

new relaxed center loss. Then, we apply the pull and push constraints to the centers

86



www.manaraa.com

of the same or different persons in visible and thermal domains. More specifically,

we enforce centers of the same person in visible domain and thermal domain to be

close to each other, and centers of different persons to be distant from each other.

Furthermore, for two different persons, the inter-class difference between their centers

in the visible domain should be similar to that in the thermal domain. We formulate

these class-level constraints as class-level supervision to train the two-stream CNN

network, which is later used to extract features from visible and thermal images sep-

arately for person re-identification. Experiments on two public datasets demonstrate

the effectiveness of the proposed method.
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Chapter 6

Conclusion
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In this research, we studied two important sub-problems of person identification,

cross-view person identification and visible-thermal person re-identification. Cross-

view person identification matches persons across temporally synchronized videos

captured by wearable cameras such as GoPro and Google Glass. It can be applied to

scenarios that need person match across wearable-camera videos. We are the first to

propose this problem to facilitate the understanding of event scenes, in which fixed

camera network are not sufficient and wearable cameras are needed. Visible-thermal

person re-identification aims to match persons across visible images and thermal

images, which can enhance the security surveillance under poor illuminations such as

night time.

For cross-view person identification, we proposed to utilize motion information

to match persons across temporally synchronized videos. Specifically, we proposed a

new triplet network to extract view-invariant features, by associating 2D optical flows

with 3D human skeletons. We further proposed a new method for synthesizing 2D

optical flows from 3D human skeleton sequence, to train the proposed triplet network.

The network was then fine-tuned on real video datasets.

We collected three datasets to evaluate the proposed method. Experimental re-

sults demonstrated the effectiveness of the proposed method, especially the incorpo-

ration of 3D human skeleton data. With the incorporation of 3D human skeleton

data for network training, the view invariance of the motion features can be im-

proved and thus better person identification is achieved. We further combined the

proposed method, which only uses motion information, with an appearance-based

person identification method. The combination of appearance information and mo-

tion information can achieve better performance. We noticed that the performance

of the proposed method is lower if there exists temporal synchronization error be-

tween two videos. Therefore, more robustness against the temporal synchronization

error is needed. For example, we can use temporal pooling to reduce the influence of
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temporal synchronization error, in the same spirit that spatial pooling can combat

against spatial translation.

For visible-thermal person re-identification, we proposed to use class-level super-

vision to learn domain-independent features. Specifically, we proposed a new relaxed

center loss to learn centers for each person: one for visible domain and one for thermal

domain. We then enforced centers of the same person to be close to each other and

centers of different persons to be distant from each other across visible and thermal

domains. Furthermore, for two different persons, the inter-class difference between

their centers in the visible domain should be similar to that in the thermal domain.

We formulated these class-level constraints as loss functions to train a two-stream

convolutional neural network, each stream of which extracts features from visible or

thermal images separately.

We evaluated the proposed method on two datasets. Experimental results demon-

strated that the class-level supervision outperforms the sample-level supervision. The

combination of class-level and sample-level supervisions can achieve better perfor-

mance. The proposed method takes the whole image as input and output the features,

which can be considered as global feature extraction. We can also put more attention

to features from local body parts with different weights to improve the performance.

6.1 Future Work

In the first work, the incorporation of 3D human skeleton data improves the view-

invariance of motion features for person identification. This provides us a new path

when addressing some challenges, which is to use an additional modality of data to

regularize the feature learning process. We can apply this kind of method to other

research topics such as action recognition, human pose estimation and so on. Also,

data generation by synthesis can be very useful, which is also seen in other researches

such as semantic segmentation by learning from video games. However, synthesizing
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realistic data is difficult, since we need to consider many factors such as illumination,

background, and non-rigid deformation. Therefore, we can consider using conditional

generative adversarial networks to implicitly incorporate these factors into synthesis,

to generate more realistic data.

Another issue in cross-view person identification and many other person identifi-

cation sub-problems, came to sight is the performance of cross-dataset testing. If a

model is trained on one dataset, the performance on another dataset is significantly

lower. This problem can be explained from two perspectives. First, we can consider it

as an insufficient data problem, which leads to overfitting of the network. A straight-

forward solution to this is to collect larger datasets with more variations. Second,

this problem can be considered as the dataset domain difference problem. To address

this problem, we need domain adaptation approaches that are robust to some domain

variations.

In the second work, the proposed method addresses the domain discrepancy prob-

lem in a feature level. We can also address the domain discrepancy problem by directly

generating images in a unified manner. Specifically, we can use conditional generative

adversarial network to generate visible image from thermal image and thermal image

from visible image. Thus, for either visible image or thermal image, we can obtain

a unified representation in image level which reduces the domain discrepancy. For

better visible-thermal person re-identification, we can also exploit human body part

information more deeply. Because different body parts can contribute differently to

the identification of a person. For example, we can use state-of-the-art human pars-

ing algorithms to divide each person image into several semantic regions and extract

features based on these regions.
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